IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i9p3814-d355103.html
   My bibliography  Save this article

Sustainability of Mussel ( Mytilus Galloprovincialis ) Farming in the Po River Delta, Northern Italy, Based on a Life Cycle Assessment Approach

Author

Listed:
  • Elena Tamburini

    (Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy)

  • Edoardo Turolla

    (Istituto Delta Ecologia Applicata, 44124 Ferrara, Italy)

  • Elisa Anna Fano

    (Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy)

  • Giuseppe Castaldelli

    (Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy)

Abstract

Molluscan shellfish aquaculture is considered a “green” industry because of the limited presence of chemicals and risk of pathogens during farming in licensed areas, which provide a safe, nutritive and healthy food source. Moreover, the environmental impact of their production is lower than all other fish animal per unit of protein. In particular, mussels’ production was the first organized mollusk aquaculture in Europe and is now one of the most extended. Italy is the second main European producer of mussels. Taking into account the relevance of the sector, Italian Mediterranean mussel ( Mytilus galloprovincialis ) aquaculture has been considered for a life cycle assessment (LCA), from a cradle-to-gate perspective. The mussel farms were located in the northern Adriatic Sea, close to the Po River Delta, a region traditionally vocated to bivalve aquaculture. Results have shown that the growing and harvesting phases are the most critical life cycle stages (“hotspots”) due to the production and use of boats, and the great quantity of non-recyclable high-density polyethylene (HDPE) socks used during the yearly productive cycle. Several improvement potentials have been identified and estimated by means of a sensitivity analysis. Furthermore, regarding the principal exporting countries to Italy (Spain and Chile), the transport factors in an overall sustainability assessment have been considered, in order to compare the local and global mussels supply chain.

Suggested Citation

  • Elena Tamburini & Edoardo Turolla & Elisa Anna Fano & Giuseppe Castaldelli, 2020. "Sustainability of Mussel ( Mytilus Galloprovincialis ) Farming in the Po River Delta, Northern Italy, Based on a Life Cycle Assessment Approach," Sustainability, MDPI, vol. 12(9), pages 1-18, May.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:9:p:3814-:d:355103
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/9/3814/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/9/3814/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jennifer S. Ford & Nathan L. Pelletier & Friederike Ziegler & Astrid J. Scholz & Peter H. Tyedmers & Ulf Sonesson & Sarah A. Kruse & Howard Silverman, 2012. "Proposed Local Ecological Impact Categories and Indicators for Life Cycle Assessment of Aquaculture," Journal of Industrial Ecology, Yale University, vol. 16(2), pages 254-265, April.
    2. Xingqiang Song & Ying Liu & Johan Berg Pettersen & Miguel Brandão & Xiaona Ma & Stian Røberg & Björn Frostell, 2019. "Life cycle assessment of recirculating aquaculture systems: A case of Atlantic salmon farming in China," Journal of Industrial Ecology, Yale University, vol. 23(5), pages 1077-1086, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jesse Sherry & Jennifer Koester, 2020. "Life Cycle Assessment of Aquaculture Stewardship Council Certified Atlantic Salmon ( Salmo salar )," Sustainability, MDPI, vol. 12(15), pages 1-15, July.
    2. Daniela Summa & Edoardo Turolla & Mattia Lanzoni & Elena Tamisari & Giuseppe Castaldelli & Elena Tamburini, 2023. "Life Cycle Assessment (LCA) of Two Different Oyster ( Crassostrea gigas ) Farming Strategies in the Sacca di Goro, Northern Adriatic Sea, Italy," Resources, MDPI, vol. 12(6), pages 1-14, May.
    3. Antonio Cortés & Sara González‐García & Amaya Franco‐Uría & Maria Teresa Moreira & Gumersindo Feijoo, 2022. "Evaluation of the environmental sustainability of the inshore great scallop (Pecten maximus) fishery in Galicia," Journal of Industrial Ecology, Yale University, vol. 26(6), pages 1920-1933, December.
    4. Edoardo Turolla & Giuseppe Castaldelli & Elisa Anna Fano & Elena Tamburini, 2020. "Life Cycle Assessment (LCA) Proves that Manila Clam Farming ( Ruditapes Philippinarum ) is a Fully Sustainable Aquaculture Practice and a Carbon Sink," Sustainability, MDPI, vol. 12(13), pages 1-12, June.
    5. Gaglio, M. & Lanzoni, M. & Goggi, F. & Fano, E.A. & Castaldelli, G., 2023. "Integrating payment for ecosystem services in protected areas governance: The case of the Po Delta Park," Ecosystem Services, Elsevier, vol. 60(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gaspard Philis & Friederike Ziegler & Lars Christian Gansel & Mona Dverdal Jansen & Erik Olav Gracey & Anne Stene, 2019. "Comparing Life Cycle Assessment (LCA) of Salmonid Aquaculture Production Systems: Status and Perspectives," Sustainability, MDPI, vol. 11(9), pages 1-27, April.
    2. Samuel Le Féon & Théo Dubois & Christophe Jaeger & Aurélie Wilfart & Nouraya Akkal-Corfini & Jacopo Bacenetti & Michele Costantini & Joël Aubin, 2021. "DEXiAqua, a Model to Assess the Sustainability of Aquaculture Systems: Methodological Development and Application to a French Salmon Farm," Sustainability, MDPI, vol. 13(14), pages 1-28, July.
    3. Ramin Ghamkhar & Christopher Hartleb & Zack Rabas & Andrea Hicks, 2022. "Evaluation of environmental and economic implications of a cold‐weather aquaponic food production system using life cycle assessment and economic analysis," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 862-874, June.
    4. Enora Barrau & Mathias Glaus, 2022. "Structural and Environmental Performance of Evolving Industrial Symbiosis: A Multidimensional Analysis," Sustainability, MDPI, vol. 15(1), pages 1-17, December.
    5. Gaspard Philis & Friederike Ziegler & Mona Dverdal Jansen & Lars Christian Gansel & Sara Hornborg & Grete Hansen Aas & Anne Stene, 2022. "Quantifying environmental impacts of cleaner fish used as sea lice treatments in salmon aquaculture with life cycle assessment," Journal of Industrial Ecology, Yale University, vol. 26(6), pages 1992-2005, December.
    6. Pietro Goglio & Sander Van Den Burg & Katerina Kousoulaki & Maggie Skirtun & Åsa Maria Espmark & Anne Helena Kettunen & Wout Abbink, 2022. "The Environmental Impact of Partial Substitution of Fish-Based Feed with Algae- and Insect-Based Feed in Salmon Farming," Sustainability, MDPI, vol. 14(19), pages 1-19, October.
    7. Onozaka, Yuko & Honkanen, Pirjo & Altintzoglou, Themistoklis, 2023. "Sustainability, perceived quality and country of origin of farmed salmon: Impact on consumer choices in the USA, France and Japan," Food Policy, Elsevier, vol. 117(C).
    8. Andreas Nicolaidis Lindqvist & Sarah Broberg & Linda Tufvesson & Sammar Khalil & Thomas Prade, 2019. "Bio-Based Production Systems: Why Environmental Assessment Needs to Include Supporting Systems," Sustainability, MDPI, vol. 11(17), pages 1-26, August.
    9. Haochen Hou & Anqi Ren & Lixingbo Yu & Zhen Ma & Yun Zhang & Ying Liu, 2023. "An Environmental Impact Assessment of Largemouth Bass ( Micropterus salmoides ) Aquaculture in Hangzhou, China," Sustainability, MDPI, vol. 15(16), pages 1-13, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:9:p:3814-:d:355103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.