IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i9p3525-d350365.html
   My bibliography  Save this article

The Pattern of Non-Roundtrip Travel on Urban Rail and Its Application in Transit Improvement

Author

Listed:
  • Zijia Wang

    (School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China)

  • Hao Tang

    (School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China)

  • Wenjuan Wang

    (College of Business Administration, Capital University of Economics and Business, Beijing 100070, China)

  • Yang Xi

    (Beijing Urban Construction Design & Development Group Co., Ltd., Beijing 100071, China)

Abstract

Transit smart card records detail travel information of passengers, which provides abundant data for analyzing public travel patterns. Regular travelers’ information extracted from smart card data (SCD) have been extensively analyzed. However, rare studies have been devoted to non-roundtrips, which account for a relatively large portion of the overall transit ridership, especially in metropolises such as Beijing. This study aimed to reveal the non-roundtrip pattern using the passenger travel data obtained from SCD. Weekly non-roundtrip SCD were used to analyze the spatiotemporal distribution patterns of overall and typical non-roundtrips’ origins and destinations (ODs). Also, subway data and bus data were combined and visualized in geographic information system (GIS). The reasons for frequent non-roundtrips generated in the metropolitan city were inferred. The results demonstrate some detected spatiotemporal patterns of non-roundtrips. It is not surprising that a large proportion of non-roundtrips serve as a rail access to intercity, but there are still many trips of this kind showing a commuting pattern. Merging SCD with bus data, the results also reveal that passengers may choose other modes as a substitute return transportation option due to rail fare or overcrowding problem. This study focused on irregular trips normally neglected in the literature and found that the number of these trips is too large to be ignored in a diversified city like Beijing. Meanwhile, the travel patterns of non-roundtrips extracted can be used to direct the operation strategies for both rail and bus. The research framework raised here could be applied in other cities and comparative analysis could be done in the future.

Suggested Citation

  • Zijia Wang & Hao Tang & Wenjuan Wang & Yang Xi, 2020. "The Pattern of Non-Roundtrip Travel on Urban Rail and Its Application in Transit Improvement," Sustainability, MDPI, vol. 12(9), pages 1-16, April.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:9:p:3525-:d:350365
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/9/3525/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/9/3525/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kandt, Jens & Leak, Alistair, 2019. "Examining inclusive mobility through smartcard data: What shall we make of senior citizens' declining bus patronage in the West Midlands?," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    2. Junqing Tang & Hans Rudolf Heinimann, 2018. "A resilience-oriented approach for quantitatively assessing recurrent spatial-temporal congestion on urban roads," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-22, January.
    3. Liu, Yang & Ji, Yanjie & Shi, Zhuangbin & He, Baohong & Liu, Qiyang, 2018. "Investigating the effect of the spatial relationship between home, workplace and school on parental chauffeurs’ daily travel mode choice," Transport Policy, Elsevier, vol. 69(C), pages 78-87.
    4. Tao, Sui & Rohde, David & Corcoran, Jonathan, 2014. "Examining the spatial–temporal dynamics of bus passenger travel behaviour using smart card data and the flow-comap," Journal of Transport Geography, Elsevier, vol. 41(C), pages 21-36.
    5. Bagchi, M. & White, P.R., 2005. "The potential of public transport smart card data," Transport Policy, Elsevier, vol. 12(5), pages 464-474, September.
    6. Morency, Catherine & Trépanier, Martin & Agard, Bruno, 2007. "Measuring transit use variability with smart-card data," Transport Policy, Elsevier, vol. 14(3), pages 193-203, May.
    7. Gang Cheng & Shuzhi Zhao & Jin Li, 2019. "The Effects of Latent Attitudinal Variables and Sociodemographic Differences on Travel Behavior in Two Small, Underdeveloped Cities in China," Sustainability, MDPI, vol. 11(5), pages 1-17, March.
    8. Cheng, Long & Chen, Xuewu & Yang, Shuo & Cao, Zhan & De Vos, Jonas & Witlox, Frank, 2019. "Active travel for active ageing in China: The role of built environment," Journal of Transport Geography, Elsevier, vol. 76(C), pages 142-152.
    9. Li, Yaping & Guo, Yuntao & Lu, Jian & Peeta, Srinivas, 2019. "Impacts of congestion pricing and reward strategies on automobile travelers’ morning commute mode shift decisions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 125(C), pages 72-88.
    10. Lee, Sanggu & Hickman, Mark & Tong, Daoqin, 2013. "Development of a temporal and spatial linkage between transit demand and land-use patterns," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 6(2), pages 33-46.
    11. Xiaoning Liu & Linjie Gao & Anning Ni & Nan Ye, 2020. "Understanding Better the Influential Factors of Commuters’ Multi-Day Travel Behavior: Evidence from Shanghai, China," Sustainability, MDPI, vol. 12(1), pages 1-13, January.
    12. D. Brockmann & L. Hufnagel & T. Geisel, 2006. "The scaling laws of human travel," Nature, Nature, vol. 439(7075), pages 462-465, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yan & Wang, Siqin & Xie, Bin, 2019. "Evaluating the effects of public transport fare policy change together with built and non-built environment features on ridership: The case in South East Queensland, Australia," Transport Policy, Elsevier, vol. 76(C), pages 78-89.
    2. Pieroni, Caio & Giannotti, Mariana & Alves, Bianca B. & Arbex, Renato, 2021. "Big data for big issues: Revealing travel patterns of low-income population based on smart card data mining in a global south unequal city," Journal of Transport Geography, Elsevier, vol. 96(C).
    3. Wang, Yihong & Correia, Gonçalo Homem de Almeida & de Romph, Erik & Timmermans, H.J.P., 2017. "Using metro smart card data to model location choice of after-work activities: An application to Shanghai," Journal of Transport Geography, Elsevier, vol. 63(C), pages 40-47.
    4. Tao, Sui & Rohde, David & Corcoran, Jonathan, 2014. "Examining the spatial–temporal dynamics of bus passenger travel behaviour using smart card data and the flow-comap," Journal of Transport Geography, Elsevier, vol. 41(C), pages 21-36.
    5. Benito Zaragozí & Sergio Trilles & Aaron Gutiérrez & Daniel Miravet, 2021. "Development of a Common Framework for Analysing Public Transport Smart Card Data," Energies, MDPI, vol. 14(19), pages 1-22, September.
    6. Qingru Zou & Xiangming Yao & Peng Zhao & Heng Wei & Hui Ren, 2018. "Detecting home location and trip purposes for cardholders by mining smart card transaction data in Beijing subway," Transportation, Springer, vol. 45(3), pages 919-944, May.
    7. De Zhao & Wei Wang & Amber Woodburn & Megan S. Ryerson, 2017. "Isolating high-priority metro and feeder bus transfers using smart card data," Transportation, Springer, vol. 44(6), pages 1535-1554, November.
    8. Wei Yu & Xiaofei Ye & Jun Chen & Xingchen Yan & Tao Wang, 2020. "Evaluation Indexes and Correlation Analysis of Origination–Destination Travel Time of Nanjing Metro Based on Complex Network Method," Sustainability, MDPI, vol. 12(3), pages 1-21, February.
    9. Amarin Siripanich & Taha Hossein Rashidi & Emily Moylan, 2019. "Interaction of Public Transport Accessibility and Residential Property Values Using Smart Card Data," Sustainability, MDPI, vol. 11(9), pages 1-24, May.
    10. Bernal, Margarita & Welch, Eric W. & Sriraj, P.S., 2016. "The effect of slow zones on ridership: An analysis of the Chicago Transit Authority “El” Blue Line," Transportation Research Part A: Policy and Practice, Elsevier, vol. 87(C), pages 11-21.
    11. Sung-Pil Hong & Yun-Hong Min & Myoung-Ju Park & Kyung Min Kim & Suk Mun Oh, 2016. "Precise estimation of connections of metro passengers from Smart Card data," Transportation, Springer, vol. 43(5), pages 749-769, September.
    12. Amaya, Margarita & Cruzat, Ramón & Munizaga, Marcela A., 2018. "Estimating the residence zone of frequent public transport users to make travel pattern and time use analysis," Journal of Transport Geography, Elsevier, vol. 66(C), pages 330-339.
    13. Stanislav Sobolevsky & Izabela Sitko & Remi Tachet des Combes & Bartosz Hawelka & Juan Murillo Arias & Carlo Ratti, 2016. "Cities through the Prism of People’s Spending Behavior," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-19, February.
    14. Zhou, Jiangping & Sipe, Neil & Ma, Zhenliang & Mateo-Babiano, Derlie & Darchen, Sébastien, 2019. "Monitoring transit-served areas with smartcard data: A Brisbane case study," Journal of Transport Geography, Elsevier, vol. 76(C), pages 265-275.
    15. Nadav Shalit & Michael Fire & Eran Ben-Elia, 2023. "A supervised machine learning model for imputing missing boarding stops in smart card data," Public Transport, Springer, vol. 15(2), pages 287-319, June.
    16. Ying Song & Yingling Fan & Xin Li & Yanjie Ji, 2018. "Multidimensional visualization of transit smartcard data using space–time plots and data cubes," Transportation, Springer, vol. 45(2), pages 311-333, March.
    17. Páez, Antonio & Trépanier, Martin & Morency, Catherine, 2011. "Geodemographic analysis and the identification of potential business partnerships enabled by transit smart cards," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(7), pages 640-652, August.
    18. Saidatulakmal Mohd & Abdul Rais Abdul Latiff & Abdelhak Senadjki, 2019. "Travel Behavior of Elderly in George Town and Malacca, Malaysia," Sustainability, MDPI, vol. 11(19), pages 1-20, September.
    19. Yu, Chang & He, Zhao-Cheng, 2017. "Analysing the spatial-temporal characteristics of bus travel demand using the heat map," Journal of Transport Geography, Elsevier, vol. 58(C), pages 247-255.
    20. Chen, Song & Wei, Xiaoyan & Xia, Nan & Yan, Zhaojin & Yuan, Yi & Zhang, H. Michael & Li, Manchun & Cheng, Liang, 2019. "Understanding road performance using online traffic condition data," Journal of Transport Geography, Elsevier, vol. 74(C), pages 382-394.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:9:p:3525-:d:350365. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.