IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i7p2863-d341242.html
   My bibliography  Save this article

Conceptual Planning of Urban–Rural Green Space from a Multidimensional Perspective: A Case Study of Zhengzhou, China

Author

Listed:
  • Bo Mu

    (College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou 450002, China)

  • Chang Liu

    (College of Forestry, Henan Agricultural University, Zhengzhou 450002, China)

  • Guohang Tian

    (College of Forestry, Henan Agricultural University, Zhengzhou 450002, China)

  • Yaqiong Xu

    (School of Architecture, Henan University of Science and Technology, Luoyang 471000, China)

  • Yali Zhang

    (College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou 450002, China)

  • Audrey L. Mayer

    (College of Forest Resources and Environmental Science, Michigan Technological University, Houghton 49931, MI, USA)

  • Rui Lv

    (Urban and Rural Planning Research Center, Zhengzhou Natural Resources and Planning Bureau, Zhengzhou, 450051, China)

  • Ruizhen He

    (College of Forestry, Henan Agricultural University, Zhengzhou 450002, China)

  • Gunwoo Kim

    (Graduate School of Urban Studies, Hanyang University, Seoul 04763, Korea)

Abstract

The structure and function of green-space system is an eternal subject of landscape architecture, especially due to limited land and a need for the coordinated development of PLEs (production, living, and ecological spaces). To make planning more scientific, this paper explored green-space structure planning via multidimensional perspectives and methods using a case study of Zhengzhou. The paper applies theories (from landscape architecture and landscape ecology) and technologies (like remote sensing, GIS—geographic information system, graph theory, and aerography) from different disciplines to analyze current green-space structure and relevant physical factors to identify and exemplify different green-space planning strategies. Overall, our analysis reveals that multiple green-space structures should be considered together and that planners and designers should have multidisciplinary knowledge. For specific strategies, the analysis finds (i) that green complexes enhance various public spaces and guide comprehensive development of urban spaces; (ii) that green ecological corridors play a critical role in regional ecological stability through maintaining good connectivity and high node degree (Dg) and betweenness centrality index (BC) green spaces; (iii) that greenway networks can integrate all landscape resources to provide more secured spaces for animals and beautiful public spaces for humans; (iv) that blue-green ecological networks can help rainwater and urban flooding disaster management; and (v) that green ventilation corridors provide air cleaning and urban cooling benefits, which can help ensure healthy and comfortable urban–rural environments. In our view, this integrated framework for planning and design green-space structure helps make the process scientific and relevant for guiding future regional green-space structure.

Suggested Citation

  • Bo Mu & Chang Liu & Guohang Tian & Yaqiong Xu & Yali Zhang & Audrey L. Mayer & Rui Lv & Ruizhen He & Gunwoo Kim, 2020. "Conceptual Planning of Urban–Rural Green Space from a Multidimensional Perspective: A Case Study of Zhengzhou, China," Sustainability, MDPI, vol. 12(7), pages 1-20, April.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2863-:d:341242
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/7/2863/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/7/2863/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Shiguang & Yu, Dexin & Kwan, Mei-Po & Zheng, Lili & Miao, Hongzhi & Li, Yongxing, 2020. "The impacts of road network density on motor vehicle travel: An empirical study of Chinese cities based on network theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 144-156.
    2. Bodin, Örjan & Saura, Santiago, 2010. "Ranking individual habitat patches as connectivity providers: Integrating network analysis and patch removal experiments," Ecological Modelling, Elsevier, vol. 221(19), pages 2393-2405.
    3. Cheng Liu & Qinglan Li & Wei Zhao & Yuqing Wang & Riaz Ali & Dian Huang & Xiaoxiong Lu & Hui Zheng & Xiaolin Wei, 2020. "Spatiotemporal Characteristics of Near-Surface Wind in Shenzhen," Sustainability, MDPI, vol. 12(2), pages 1-19, January.
    4. Huawei Li & Guifang Wang & Guohang Tian & Sándor Jombach, 2020. "Mapping and Analyzing the Park Cooling Effect on Urban Heat Island in an Expanding City: A Case Study in Zhengzhou City, China," Land, MDPI, vol. 9(2), pages 1-17, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bo Mu & Guohang Tian & Gengyu Xin & Miao Hu & Panpan Yang & Yiwen Wang & Hao Xie & Audrey L. Mayer & Yali Zhang, 2021. "Measuring Dynamic Changes in the Spatial Pattern and Connectivity of Surface Waters Based on Landscape and Graph Metrics: A Case Study of Henan Province in Central China," Land, MDPI, vol. 10(5), pages 1-21, May.
    2. Hongwei Li & Erqi Xu & Hongqi Zhang, 2021. "High-resolution assessment of urban disaster resilience: a case study of Futian District, Shenzhen, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1001-1024, August.
    3. Zihan Cai & Sidong Zhao & Mengshi Huang & Congguo Zhang, 2023. "Evolution Model, Mechanism, and Performance of Urban Park Green Areas in the Grand Canal of China," Land, MDPI, vol. 13(1), pages 1-29, December.
    4. Jakub Chromčák & Daša Bačová & Pavol Pecho & Anna Seidlová, 2021. "The Possibilities of Orthophotos Application for Calculation of Ecological Stability Coefficient Purposes," Sustainability, MDPI, vol. 13(6), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roy, Arijit & Bhattacharya, Sudeepto & Ramprakash, M. & Senthil Kumar, A., 2016. "Modelling critical patches of connectivity for invasive Maling bamboo (Yushania maling) in Darjeeling Himalayas using graph theoretic approach," Ecological Modelling, Elsevier, vol. 329(C), pages 77-85.
    2. Qian Zuo & Yong Zhou & Jingyi Liu, 2022. "Construction and Optimization Strategy of an Ecological Network in Mountainous Areas: A Case Study in Southwestern Hubei Province, China," IJERPH, MDPI, vol. 19(15), pages 1-27, August.
    3. Zhicong Zhao & Pei Wang & Xiaoshan Wang & Fangyi Wang & Tz-Hsuan Tseng & Yue Cao & Shuyu Hou & Jiayuan Peng & Rui Yang, 2022. "A Protected Area Connectivity Evaluation and Strategy Development Framework for Post-2020 Biodiversity Conservation," Land, MDPI, vol. 11(10), pages 1-17, September.
    4. Richard Smardon, 2020. "6th Fábos Conference on Landscape and Greenway Planning," Land, MDPI, vol. 9(11), pages 1-2, November.
    5. Taher Safarrad & Mostafa Ghadami & Andreas Dittmann & Mousa Pazhuhan (Panahandeh Khah), 2021. "Tourism Effect on the Spatiotemporal Pattern of Land Surface Temperature (LST): Babolsar and Fereydonkenar Cities (Cases Study in Iran)," Land, MDPI, vol. 10(9), pages 1-25, September.
    6. Hui Ye & Zhaoping Yang & Xiaoliang Xu, 2020. "Ecological Corridors Analysis Based on MSPA and MCR Model—A Case Study of the Tomur World Natural Heritage Region," Sustainability, MDPI, vol. 12(3), pages 1-15, January.
    7. Yunfang Jiang & Shidan Jiang & Tiemao Shi, 2020. "Comparative Study on the Cooling Effects of Green Space Patterns in Waterfront Build-Up Blocks: An Experience from Shanghai," IJERPH, MDPI, vol. 17(22), pages 1-29, November.
    8. Rui Ding, 2019. "The Complex Network Theory-Based Urban Land-Use and Transport Interaction Studies," Complexity, Hindawi, vol. 2019, pages 1-14, June.
    9. Almpanidou, Vasiliki & Mazaris, Antonios D. & Mertzanis, Yorgos & Avraam, Ioannis & Antoniou, Ioannis & Pantis, John D. & Sgardelis, Stefanos P., 2014. "Providing insights on habitat connectivity for male brown bears: A combination of habitat suitability and landscape graph-based models," Ecological Modelling, Elsevier, vol. 286(C), pages 37-44.
    10. Morteza Aien & Omid Mahdavi, 2020. "On the Way of Policy Making to Reduce the Reliance of Fossil Fuels: Case Study of Iran," Sustainability, MDPI, vol. 12(24), pages 1-28, December.
    11. Iván Barbero-Bermejo & Gabriela Crespo-Luengo & Ricardo Enrique Hernández-Lambraño & David Rodríguez de la Cruz & José Ángel Sánchez-Agudo, 2020. "Natural Protected Areas as Providers of Ecological Connectivity in the Landscape: The Case of the Iberian Lynx," Sustainability, MDPI, vol. 13(1), pages 1-17, December.
    12. Diego Lizana-Ciudad & Víctor J. Colino-Rabanal & Óscar J. Arribas & Miguel Lizana, 2021. "Connectivity Predicts Presence but Not Population Density in the Habitat-Specific Mountain Lizard Iberolacerta martinezricai," Sustainability, MDPI, vol. 13(5), pages 1-14, March.
    13. Wang, Hongzheng & Lu, Xinhai & Feng, Lianyue & Yuan, Zhihang & Tang, Yifeng & Jiang, Xu, 2023. "Dynamic change and evolutionary mechanism of city land leasing network—Taking the Yangtze River Delta region in China as an example," Land Use Policy, Elsevier, vol. 132(C).
    14. Liu, Shiliang & Yin, Yijie & Liu, Xuehua & Cheng, Fangyan & Yang, Juejie & Li, Junran & Dong, Shikui & Zhu, Annah, 2017. "Ecosystem Services and landscape change associated with plantation expansion in a tropical rainforest region of Southwest China," Ecological Modelling, Elsevier, vol. 353(C), pages 129-138.
    15. Hashem Althagafi & Sergei Petrovskii, 2021. "Metapopulation Persistence and Extinction in a Fragmented Random Habitat: A Simulation Study," Mathematics, MDPI, vol. 9(18), pages 1-16, September.
    16. Kichan Kim & Chang Kil Lee & Hyun Woo Kim, 2022. "Understanding the Accessibility of Urban Parks and Connectivity of Green Spaces in Single-Person Household Distribution: Case Study of Incheon, South Korea," Land, MDPI, vol. 11(9), pages 1-17, August.
    17. Yuping Dong & Helin Liu & Tianming Zheng, 2020. "Does the Connectivity of Urban Public Green Space Promote Its Use? An Empirical Study of Wuhan," IJERPH, MDPI, vol. 17(1), pages 1-19, January.
    18. Xiaojing Feng & Jiahao Yu & Chuliang Xin & Tianhao Ye & Tian’ao Wang & Honglin Chen & Xuemei Zhang & Lili Zhang, 2023. "Quantifying and Comparing the Cooling Effects of Three Different Morphologies of Urban Parks in Chengdu," Land, MDPI, vol. 12(2), pages 1-21, February.
    19. Jingwen Yuan & Hualan Wang & Yannan Fang, 2023. "Identification of Critical Links in Urban Road Network Based on GIS," Sustainability, MDPI, vol. 15(20), pages 1-19, October.
    20. Laitila, Jussi & Moilanen, Atte, 2013. "Approximating the dispersal of multi-species ecological entities such as communities, ecosystems or habitat types," Ecological Modelling, Elsevier, vol. 259(C), pages 24-29.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2863-:d:341242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.