IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i15p9582-d880008.html
   My bibliography  Save this article

Construction and Optimization Strategy of an Ecological Network in Mountainous Areas: A Case Study in Southwestern Hubei Province, China

Author

Listed:
  • Qian Zuo

    (Key Laboratory for Geographical Process Analysis & Simulation of Hubei Province, Central China Normal University, Wuhan 430079, China
    College of Urban and Environmental Sciences, Central China Normal University, Wuhan 430079, China)

  • Yong Zhou

    (Key Laboratory for Geographical Process Analysis & Simulation of Hubei Province, Central China Normal University, Wuhan 430079, China
    College of Urban and Environmental Sciences, Central China Normal University, Wuhan 430079, China)

  • Jingyi Liu

    (Key Laboratory for Geographical Process Analysis & Simulation of Hubei Province, Central China Normal University, Wuhan 430079, China
    College of Urban and Environmental Sciences, Central China Normal University, Wuhan 430079, China)

Abstract

High-intensity urban development and economic exploitation have led to the fragmentation and isolation of regional habitat patches, and biodiversity is under serious threat. Scientific identification and effective optimization of ecological networks are essential for maintaining and restoring regional ecosystem connectivity and guiding sustainable socio-economic development. Taking the mountainous areas of southwest Hubei Province (MASHP) in central China as an example, this study first developed a new integrated approach to identify ecological sources based on a quantitative assessment of ecosystem services and the morphological spatial pattern analysis (MSPA) method; it then used the Linkage Mapper tool to extract ecological corridors, applied the principle of hydrological analysis to identify ecological nodes, evaluated each ecological element to quantify its importance, and finally constructed the ecological network and further proposed some optimization countermeasures. The results show that the ecological network in the MASHP is dominated by ecological resources composed of forestland. Connectivity in the central region is significantly better than in other regions, including 49 ecological sources with an area of 3837.92 km 2 , 125 ecological corridors with a total length of 2014.61 km, and 46 ecological nodes. According to the spatial distribution of crucial ecological landscape elements, a complete and systematic ecological framework of “two verticals, three belts, three groups, and multiple nodes” was proposed. The internal optimization of the ecological network in mountainous areas should focus on improving ecological flow, and strategies such as enhancing the internal connectivity of ecosystems, unblocking ecological corridors, and dividing ecological functional zones can be adopted. Based on the above analyses, this study also made recommendations for ecological protection and development and construction planning in mountainous areas. This study can provide realistic paths and scientific guidelines for ecological security and high-quality development in the MASHP, and it can also have implications for the construction of ecological networks and comprehensive ecological management in other mountainous areas.

Suggested Citation

  • Qian Zuo & Yong Zhou & Jingyi Liu, 2022. "Construction and Optimization Strategy of an Ecological Network in Mountainous Areas: A Case Study in Southwestern Hubei Province, China," IJERPH, MDPI, vol. 19(15), pages 1-27, August.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:15:p:9582-:d:880008
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/15/9582/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/15/9582/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaochang Yang & Sinan Li & Congmou Zhu & Baiyu Dong & Hongwei Xu, 2021. "Simulating Urban Expansion Based on Ecological Security Pattern—A Case Study of Hangzhou, China," IJERPH, MDPI, vol. 19(1), pages 1-20, December.
    2. Haiyan Fang & Zemeng Fan, 2020. "Assessment of Soil Erosion at Multiple Spatial Scales Following Land Use Changes in 1980–2017 in the Black Soil Region, (NE) China," IJERPH, MDPI, vol. 17(20), pages 1-19, October.
    3. Di Zhou & Wei Song, 2021. "Identifying Ecological Corridors and Networks in Mountainous Areas," IJERPH, MDPI, vol. 18(9), pages 1-19, April.
    4. Bodin, Örjan & Saura, Santiago, 2010. "Ranking individual habitat patches as connectivity providers: Integrating network analysis and patch removal experiments," Ecological Modelling, Elsevier, vol. 221(19), pages 2393-2405.
    5. Li Peng & Tiantian Chen & Shaoquan Liu, 2016. "Spatiotemporal Dynamics and Drivers of Farmland Changes in Panxi Mountainous Region, China," Sustainability, MDPI, vol. 8(11), pages 1-17, November.
    6. Qianqian Huang & Benhong Peng & Guo Wei & Anxia Wan, 2021. "Dynamic assessment and early warning of ecological security: a case study of the Yangtze river urban agglomeration," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2441-2461, July.
    7. Ronglei Yang & Zhongke Bai & Zeyu Shi, 2021. "Linking Morphological Spatial Pattern Analysis and Circuit Theory to Identify Ecological Security Pattern in the Loess Plateau: Taking Shuozhou City as an Example," Land, MDPI, vol. 10(9), pages 1-18, August.
    8. Tim Newbold & Lawrence N. Hudson & Samantha L. L. Hill & Sara Contu & Igor Lysenko & Rebecca A. Senior & Luca Börger & Dominic J. Bennett & Argyrios Choimes & Ben Collen & Julie Day & Adriana De Palma, 2015. "Global effects of land use on local terrestrial biodiversity," Nature, Nature, vol. 520(7545), pages 45-50, April.
    9. Feng Tang & Xu Zhou & Li Wang & Yangjian Zhang & Meichen Fu & Pengtao Zhang, 2021. "Linking Ecosystem Service and MSPA to Construct Landscape Ecological Network of the Huaiyang Section of the Grand Canal," Land, MDPI, vol. 10(9), pages 1-23, August.
    10. Jiaxing Cui & Xuesong Kong & Jing Chen & Jianwei Sun & Yuanyuan Zhu, 2021. "Spatially Explicit Evaluation and Driving Factor Identification of Land Use Conflict in Yangtze River Economic Belt," Land, MDPI, vol. 10(1), pages 1-24, January.
    11. Ling Xiao & Li Cui & Qun’ou Jiang & Meilin Wang & Lidan Xu & Haiming Yan, 2020. "Spatial Structure of a Potential Ecological Network in Nanping, China, Based on Ecosystem Service Functions," Land, MDPI, vol. 9(10), pages 1-18, October.
    12. Luwen Liu & Xingrong Chen & Wanxu Chen & Xinyue Ye, 2020. "Identifying the Impact of Landscape Pattern on Ecosystem Services in the Middle Reaches of the Yangtze River Urban Agglomerations, China," IJERPH, MDPI, vol. 17(14), pages 1-26, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caihong Yang & Huijun Guo & Xiaoyuan Huang & Yanxia Wang & Xiaona Li & Xinyuan Cui, 2022. "Ecological Network Construction of a National Park Based on MSPA and MCR Models: An Example of the Proposed National Parks of “Ailaoshan-Wuliangshan” in China," Land, MDPI, vol. 11(11), pages 1-17, October.
    2. Shan Ke & Hui Pan & Bowen Jin, 2023. "Identification of Priority Areas for Ecological Restoration Based on Human Disturbance and Ecological Security Patterns: A Case Study of Fuzhou City, China," Sustainability, MDPI, vol. 15(3), pages 1-26, February.
    3. Jiao Jiang & Abudukeyimu Abulizi & Abdugheni Abliz & Abudoukeremujiang Zayiti & Adila Akbar & Bin Ou, 2022. "Construction of Landscape Ecological Security Pattern in the Zhundong Region, Xinjiang, NW China," IJERPH, MDPI, vol. 19(10), pages 1-15, May.
    4. Yuxin Qi & Yuandong Hu, 2024. "Spatiotemporal Variation and Driving Factors Analysis of Habitat Quality: A Case Study in Harbin, China," Land, MDPI, vol. 13(1), pages 1-21, January.
    5. Yutong Zhang & Wei Zhou & Danxue Luo, 2023. "The Relationship Research between Biodiversity Conservation and Economic Growth: From Multi-Level Attempts to Key Development," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    6. Law, Elizabeth A. & Macchi, Leandro & Baumann, Matthias & Decarre, Julieta & Gavier-Pizarro, Gregorio & Levers, Christian & Mastrangelo, Matías E. & Murray, Francisco & Müller, Daniel & Piquer-Rodrígu, 2021. "Fading opportunities for mitigating agriculture-environment trade-offs in a south American deforestation hotspot," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 262.
    7. Mohamed Fomba & Zinash Delebo Osunde & Souleymane Sidi Traoré & Appollonia Okhimamhe & Janina Kleemann & Christine Fürst, 2024. "Urban Green Spaces in Bamako and Sikasso, Mali: Land Use Changes and Perceptions," Land, MDPI, vol. 13(1), pages 1-20, January.
    8. Baldini, Carolina & Marasas, Mariana Edith & Tittonell, Pablo & Drozd, Andrea Alejandra, 2022. "Urban, periurban and horticultural landscapes – Conflict and sustainable planning in La Plata district, Argentina," Land Use Policy, Elsevier, vol. 117(C).
    9. Roy, Arijit & Bhattacharya, Sudeepto & Ramprakash, M. & Senthil Kumar, A., 2016. "Modelling critical patches of connectivity for invasive Maling bamboo (Yushania maling) in Darjeeling Himalayas using graph theoretic approach," Ecological Modelling, Elsevier, vol. 329(C), pages 77-85.
    10. Xiaoliang Shi & Fei Chen & Hao Ding & Mengqi Shi & Yi Li, 2022. "Assessing Vegetation Ecosystem Resistance to Drought in the Middle Reaches of the Yellow River Basin, China," IJERPH, MDPI, vol. 19(7), pages 1-16, March.
    11. Ziqi Meng & Jinwei Dong & Erle C. Ellis & Graciela Metternicht & Yuanwei Qin & Xiao-Peng Song & Sara Löfqvist & Rachael D. Garrett & Xiaopeng Jia & Xiangming Xiao, 2023. "Post-2020 biodiversity framework challenged by cropland expansion in protected areas," Nature Sustainability, Nature, vol. 6(7), pages 758-768, July.
    12. Shuangshuang Liu & Qipeng Liao & Mingzhu Xiao & Dengyue Zhao & Chunbo Huang, 2022. "Spatial and Temporal Variations of Habitat Quality and Its Response of Landscape Dynamic in the Three Gorges Reservoir Area, China," IJERPH, MDPI, vol. 19(6), pages 1-20, March.
    13. Hu Liao & Hu Li & Chen-Song Duan & Xin-Yuan Zhou & Qiu-Ping Luo & Xin-Li An & Yong-Guan Zhu & Jian-Qiang Su, 2022. "Response of soil viral communities to land use changes," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    14. Karlsson, Johan O. & Röös, Elin, 2019. "Resource-efficient use of land and animals—Environmental impacts of food systems based on organic cropping and avoided food-feed competition," Land Use Policy, Elsevier, vol. 85(C), pages 63-72.
    15. Yanru Zhao & Xiaomin Zhao & Xinyi Huang & Jiaxin Guo & Guohui Chen, 2022. "Identifying a Period of Spatial Land Use Conflicts and Their Driving Forces in the Pearl River Delta," Sustainability, MDPI, vol. 15(1), pages 1-17, December.
    16. Gyanendra Prasad Joshi & Fayadh Alenezi & Gopalakrishnan Thirumoorthy & Ashit Kumar Dutta & Jinsang You, 2021. "Ensemble of Deep Learning-Based Multimodal Remote Sensing Image Classification Model on Unmanned Aerial Vehicle Networks," Mathematics, MDPI, vol. 9(22), pages 1-17, November.
    17. Nobel, Anne & Lizin, Sebastien & Malina, Robert, 2023. "What drives the designation of protected areas? Accounting for spatial dependence using a composite marginal likelihood approach," Ecological Economics, Elsevier, vol. 205(C).
    18. Hanwen Zhang & Yanqing Lang, 2022. "Quantifying and Analyzing the Responses of Habitat Quality to Land Use Change in Guangdong Province, China over the Past 40 Years," Land, MDPI, vol. 11(6), pages 1-23, May.
    19. Haiyan Fang, 2021. "Changes in Cultivated Land Area and Associated Soil and SOC Losses in Northeastern China: The Role of Land Use Policies," IJERPH, MDPI, vol. 18(21), pages 1-13, October.
    20. Jan-Philipp Sasse & Evelina Trutnevyte, 2023. "A low-carbon electricity sector in Europe risks sustaining regional inequalities in benefits and vulnerabilities," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:15:p:9582-:d:880008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.