IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i6p1310-d1682902.html
   My bibliography  Save this article

Spatial Gradient Effects of Landscape Pattern on Ecological Quality Along the Grand Canal

Author

Listed:
  • Yonggeng Xiong

    (College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China)

  • Aibo Jin

    (School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China)

Abstract

The Grand Canal serves as a vital water transportation route, a UNESCO World Cultural Heritage site, and an ecological corridor. It is currently undergoing coordinated transformation through infrastructure development, heritage preservation, and ecological restoration. However, existing research has primarily focused on either cultural heritage conservation or localized ecological issues, with limited attention to the spatial relationship between landscape patterns and ecological quality along the entire corridor. To address this gap, this study examines eight sections of the Grand Canal and develops a gradient analysis framework based on equidistant buffer zones. The framework integrates the Remote Sensing Ecological Index (RSEI) with landscape pattern indices to assess ecological responses across spatial gradients. A Multi-scale Geographically Weighted Regression (MGWR) model is applied to reveal the spatially heterogeneous effects of landscape patterns on ecological quality. From 2013 to 2023, landscape patterns showed a trend toward increasing agglomeration and regularity. This is indicated by a rise in the Aggregation Index (AI) from 91.24 to 91.38 and declines in both patch density (PD) from 8.45 to 8.20 and Landscape Shape Index (LSI) from 199.74 to 196.72. During the same period, ecological quality slightly declined, with RSEI decreasing from 0.66 to 0.57. The effects of PD and Shannon’s Diversity Index (SHDI) on ecological quality varied across canal sections. In highly urbanized areas such as the Tonghui River, these indices were positively correlated with ecological quality, whereas in less urbanized areas like the Huitong River, negative correlations were observed. Overall, the strength of these correlations tended to weaken with increasing buffer distance. This study provides a scientific foundation for the integrated development of ecological protection and spatial planning along the Grand Canal and offers theoretical insights for the refined management of other major inland waterways.

Suggested Citation

  • Yonggeng Xiong & Aibo Jin, 2025. "Spatial Gradient Effects of Landscape Pattern on Ecological Quality Along the Grand Canal," Land, MDPI, vol. 14(6), pages 1-23, June.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:6:p:1310-:d:1682902
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/6/1310/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/6/1310/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:6:p:1310-:d:1682902. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.