IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i5p930-d1641944.html
   My bibliography  Save this article

Spatial–Temporal Evolution of Ecological Network Structure During 1967–2021 in Yongding River Floodplain

Author

Listed:
  • Junyi Su

    (School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China)

  • Minghao Wu

    (School of Architecture & Urban Planning, Shenzhen University, Shenzhen 518060, China)

  • Zhicheng Liu

    (School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China)

Abstract

Constructing a rational ecological network is crucial for balancing regional development with environmental protection. However, existing research typically emphasizes the analysis of overall patterns, lacking an in-depth exploration of the dynamic changes in key elements and the interactions between different components. Using the Yongding River floodplain as a case study, this study applied morphological spatial pattern analysis, landscape connectivity metrics, and biodiversity assessments to identify core ecological source areas. Circuit theory was used to delineate ecological corridors and analyze network evolution across four key years, while graph theory facilitated an in-depth analysis of network structural characteristics. Furthermore, key areas for ecological restoration were identified within the floodplain. We found that the number of ecological source patches in the study area has remained relatively stable, though their total area has shown a fluctuating decline, accounting for approximately 10% of the floodplain. Additionally, ecological corridors have decreased significantly from 1967 to 2021, with a marked reduction in major corridors, leading to increased resistance to material and energy flow and a corresponding decline in network connectivity and stability. More importantly, current ecological pinch points are primarily distributed in a bead-like pattern along the Yongding River channel, while ecological barriers are concentrated in the northern and eastern floodplain, often at intersections of dense road networks and ecological corridors. These critical areas of fragmentation within the ecological network are prioritized for targeted ecological protection and restoration efforts. Overall, this study advances our understanding of the spatial distribution and composition of key ecological elements within river corridor networks and offers a framework for evaluating these networks through a multidimensional optimization approach for ecological source patches. At the same time, we conducted an in-depth analysis of key fragmentation areas in the Yongding River floodplain, providing valuable guidance for future ecological protection and restoration initiatives in river corridors.

Suggested Citation

  • Junyi Su & Minghao Wu & Zhicheng Liu, 2025. "Spatial–Temporal Evolution of Ecological Network Structure During 1967–2021 in Yongding River Floodplain," Land, MDPI, vol. 14(5), pages 1-23, April.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:5:p:930-:d:1641944
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/5/930/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/5/930/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xudan Zhou & Chenyao Hao & Yu Bao & Qiushi Zhang & Qing Wang & Wei Wang & Hongliang Guo, 2023. "Is the Urban Landscape Connected? Construction and Optimization of Urban Ecological Networks Based on Morphological Spatial Pattern Analysis," Sustainability, MDPI, vol. 15(20), pages 1-19, October.
    2. Liquan Xu & Zhentian Zhang & Gangyi Tan & Junqing Zhou & Yang Wang, 2022. "Analysis on the Evolution and Resilience of Ecological Network Structure in Wuhan Metropolitan Area," Sustainability, MDPI, vol. 14(14), pages 1-16, July.
    3. Zhenzhen Yuan & Weijie Li & Yong Wang & Dayun Zhu & Qiuhong Wang & Yan Liu & Lingyan Zhou, 2022. "Ecosystem Health Evaluation and Ecological Security Patterns Construction Based on VORSD and Circuit Theory: A Case Study in the Three Gorges Reservoir Region in Chongqing, China," IJERPH, MDPI, vol. 20(1), pages 1-19, December.
    4. Caihong Yang & Huijun Guo & Xiaoyuan Huang & Yanxia Wang & Xiaona Li & Xinyuan Cui, 2022. "Ecological Network Construction of a National Park Based on MSPA and MCR Models: An Example of the Proposed National Parks of “Ailaoshan-Wuliangshan” in China," Land, MDPI, vol. 11(11), pages 1-17, October.
    5. Steve Carver & Sif Konráðsdóttir & Snæbjörn Guðmundsson & Ben Carver & Oliver Kenyon, 2023. "New Approaches to Modelling Wilderness Quality in Iceland," Land, MDPI, vol. 12(2), pages 1-28, February.
    6. He Huang & Yanzhi Xiao & Guochang Ding & Lingyun Liao & Chen Yan & Qunyue Liu & Yaling Gao & Xiangcai Xie, 2023. "Comprehensive Evaluation of Island Habitat Quality Based on the Invest Model and Terrain Diversity: A Case Study of Haitan Island, China," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    7. Feng Tang & Xu Zhou & Li Wang & Yangjian Zhang & Meichen Fu & Pengtao Zhang, 2021. "Linking Ecosystem Service and MSPA to Construct Landscape Ecological Network of the Huaiyang Section of the Grand Canal," Land, MDPI, vol. 10(9), pages 1-23, August.
    8. Xvlu Wang & Yingjun Sun & Qinghao Liu & Liguo Zhang, 2023. "Construction and Optimization of Ecological Network Based on Landscape Ecological Risk Assessment: A Case Study in Jinan," Land, MDPI, vol. 12(4), pages 1-19, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shaobo Liu & Yiting Xia & Yifeng Ji & Wenbo Lai & Jiang Li & Yicheng Yin & Jialing Qi & Yating Chang & Hao Sun, 2023. "Balancing Urban Expansion and Ecological Connectivity through Ecological Network Optimization—A Case Study of ChangSha County," Land, MDPI, vol. 12(7), pages 1-21, July.
    2. Zechen Wang & Zhenqin Shi & Jingeng Huo & Wenbo Zhu & Yanhui Yan & Na Ding, 2023. "Construction and Optimization of an Ecological Network in Funiu Mountain Area Based on MSPA and MCR Models, China," Land, MDPI, vol. 12(8), pages 1-13, August.
    3. Qian Zuo & Yong Zhou & Jingyi Liu, 2022. "Construction and Optimization Strategy of an Ecological Network in Mountainous Areas: A Case Study in Southwestern Hubei Province, China," IJERPH, MDPI, vol. 19(15), pages 1-27, August.
    4. Yijia Zhao & Peiyuan Zhang & Hao Xu & Wei Liu, 2024. "Assessment and Optimization of Ecological Networks in Trans-Provincial Metropolitan Areas—A Case Study of the Xuzhou Metropolitan Area," Land, MDPI, vol. 14(1), pages 1-28, December.
    5. Mao Feng & Wanmin Zhao & Tao Zhang, 2023. "Construction and Optimization Strategy of County Ecological Infrastructure Network Based on MCR and Gravity Model—A Case Study of Langzhong County in Sichuan Province," Sustainability, MDPI, vol. 15(11), pages 1-19, May.
    6. Nurdan Erdoğan, 2025. "Spatiotemporal Analysis of Habitat Quality and Connectivity in Response to Land Use/Cover Change: A Case Study of İzmir," Sustainability, MDPI, vol. 17(6), pages 1-26, March.
    7. Shaokun Zhou & Yuhong Song & Yijiao Li & Jing Wang & Lan Zhang, 2022. "Construction of Ecological Security Pattern for Plateau Lake Based on MSPA–MCR Model: A Case Study of Dianchi Lake Area," Sustainability, MDPI, vol. 14(21), pages 1-17, November.
    8. Anna Dóra Sæþórsdóttir & Edita Tverijonaite, 2024. "Wilderness as Tourism Destination: Place Meanings and Preferences of Tourism Service Providers," Sustainability, MDPI, vol. 16(9), pages 1-18, May.
    9. Jinyan Liu & Junyi Li & Daoyuan Chen & Linye Guo & Guochang Ding & Jianwen Dong, 2024. "Differential Analysis of Island Mountain Plant Community Characteristics: Ecological Sensitivity Perspectives," Sustainability, MDPI, vol. 16(5), pages 1-25, February.
    10. Liang Lv & Shihao Zhang & Jie Zhu & Ziming Wang & Zhe Wang & Guoqing Li & Chen Yang, 2022. "Ecological Restoration Strategies for Mountainous Cities Based on Ecological Security Patterns and Circuit Theory: A Case of Central Urban Areas in Chongqing, China," IJERPH, MDPI, vol. 19(24), pages 1-21, December.
    11. Jiaqi Hu & Sheng Jiao & Huiwen Xia & Qiaoyun Qian, 2023. "Construction of Rural Multifunctional Landscape Corridor Based on MSPA and MCR Model—Taking Liukeng Cultural and Ecological Tourism Area as an Example," Sustainability, MDPI, vol. 15(16), pages 1-19, August.
    12. Jing Xie & Binggeng Xie & Kaichun Zhou & Junhan Li & Jianyong Xiao & Changchang Liu & Xuemao Zhang, 2023. "Multiple Probability Ecological Network and County-Scale Management," Land, MDPI, vol. 12(8), pages 1-18, August.
    13. Wendi Chen & Junsan Zhao & Guoping Chen & Yilin Lin & Haibo Yang & Qiaoxiong Chen, 2025. "Ecological Network Optimization and Security Pattern Development for Kunming’s Main Urban Area Using the MSPA-MCR Model," Sustainability, MDPI, vol. 17(8), pages 1-26, April.
    14. Uthpala Mudalige & Steve Carver, 2024. "Unveiling Sri Lanka’s Wilderness: GIS-Based Modelling of Wilderness Attributes," Land, MDPI, vol. 13(4), pages 1-19, March.
    15. Fengyu Wang & Shuai Tong & Yun Chu & Tianlong Liu & Xiang Ji, 2023. "Spatio-Temporal Evolution of Key Areas of Territorial Ecological Restoration in Resource-Exhausted Cities: A Case Study of Jiawang District, China," Land, MDPI, vol. 12(9), pages 1-25, September.
    16. Ruicong Zhang & Maogui Hu & Anjie Sheng & Wei Deng & Shaoyao Zhang & Jintong Liu, 2025. "Construction of Ecological Security Network in Mountainous Transitional Geospace Using Circuit Theory and Morphological Spatial Pattern Analysis: A Case Study of Taihang Mountain Area," Sustainability, MDPI, vol. 17(4), pages 1-18, February.
    17. Ran Bi & Wei Fu & Xuanni Fu, 2024. "Heavy Metal Spatial Variation Mechanism and Ecological Health Risk Assessment in Volcanic Island Soils: A Case Study of Weizhou Island, China," Land, MDPI, vol. 14(1), pages 1-23, December.
    18. Qiaoyan Lin & Yu Song & Yixin Zhang & Jian Li Hao & Zhijie Wu, 2022. "Strategies for Restoring and Managing Ecological Corridors of Freshwater Ecosystem," IJERPH, MDPI, vol. 19(23), pages 1-19, November.
    19. Fatemeh Kazemi & Mansoure Jozay & Farzaneh Salahshoor & Eddie van Etten & Sahar Rezaie, 2023. "Drought Stress Responses of Some Prairie Landscape C4 Grass Species for Xeric Urban Applications," Land, MDPI, vol. 12(6), pages 1-21, June.
    20. Shan Ke & Hui Pan & Bowen Jin, 2023. "Identification of Priority Areas for Ecological Restoration Based on Human Disturbance and Ecological Security Patterns: A Case Study of Fuzhou City, China," Sustainability, MDPI, vol. 15(3), pages 1-26, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:5:p:930-:d:1641944. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.