IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i7p2639-d337421.html
   My bibliography  Save this article

Bromatological, Proximate and Ultimate Analysis of OFMSW for Different Seasons and Collection Systems

Author

Listed:
  • Isabella Pecorini

    (DESTEC—Department of Energy, Systems, Territory and Construction Engineering, University of Pisa, 56122 Pisa, Italy)

  • Elena Rossi

    (DESTEC—Department of Energy, Systems, Territory and Construction Engineering, University of Pisa, 56122 Pisa, Italy)

  • Renato Iannelli

    (DESTEC—Department of Energy, Systems, Territory and Construction Engineering, University of Pisa, 56122 Pisa, Italy)

Abstract

In order to study the quality of organic fractions of municipal solid waste (OFMSW), five different municipalities in Tuscany were chosen for sampling according to the peculiarities of their collection systems. The five collection systems selected were sampled four times: during March, June, September and December, for a total of 20 picking analyses. In addition, emphasis was also given to the study of the variability of OFMSW composition related to ultimate, proximate and bromatological analyses. Road container collection systems proved to have a higher content of non-compostable and undesirable fractions (22%±1%) when compared to door-to-door systems (6% ± 1%). During months with lower temperature (March and December), the garden waste content in the OFMSW was negligible, with kitchen waste prevailing. This altered the physical chemical composition of OFMSW, which had a lower lignin content and higher methane production in the months with lower temperatures (272 ± 23 NLCH 4 kg TVS −1 ) compared to June and September (238 ± 14 NLCH 4 kg TVS −1 ). In general, the Tuscan OFMSW had a higher dry matter content (42%) than observed in previous studies. In conclusion, the result could direct possible future operators of anaerobic digestion plants towards the choice of dry and semi-dry technologies.

Suggested Citation

  • Isabella Pecorini & Elena Rossi & Renato Iannelli, 2020. "Bromatological, Proximate and Ultimate Analysis of OFMSW for Different Seasons and Collection Systems," Sustainability, MDPI, vol. 12(7), pages 1-20, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2639-:d:337421
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/7/2639/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/7/2639/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Francesca Demichelis & Francesco Piovano & Silvia Fiore, 2019. "Biowaste Management in Italy: Challenges and Perspectives," Sustainability, MDPI, vol. 11(15), pages 1-21, August.
    2. Isabella Pecorini & Renato Iannelli, 2020. "Characterization of Excavated Waste of Different Ages in View of Multiple Resource Recovery in Landfill Mining," Sustainability, MDPI, vol. 12(5), pages 1-20, February.
    3. Browne, James D. & Murphy, Jerry D., 2013. "Assessment of the resource associated with biomethane from food waste," Applied Energy, Elsevier, vol. 104(C), pages 170-177.
    4. Baldi, F. & Pecorini, I. & Iannelli, R., 2019. "Comparison of single-stage and two-stage anaerobic co-digestion of food waste and activated sludge for hydrogen and methane production," Renewable Energy, Elsevier, vol. 143(C), pages 1755-1765.
    5. Tyagi, Vinay Kumar & Fdez-Güelfo, L.A. & Zhou, Yan & Álvarez-Gallego, C.J. & Garcia, L.I. Romero & Ng, Wun Jern, 2018. "Anaerobic co-digestion of organic fraction of municipal solid waste (OFMSW): Progress and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 380-399.
    6. Isabella Pecorini & Francesco Baldi & Renato Iannelli, 2019. "Biochemical Hydrogen Potential Tests Using Different Inocula," Sustainability, MDPI, vol. 11(3), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elena Rossi & Isabella Pecorini & Giovanni Ferrara & Renato Iannelli, 2022. "Dry Anaerobic Digestion of the Organic Fraction of Municipal Solid Waste: Biogas Production Optimization by Reducing Ammonia Inhibition," Energies, MDPI, vol. 15(15), pages 1-17, July.
    2. Elena Rossi & Isabella Pecorini & Renato Iannelli, 2022. "Multilinear Regression Model for Biogas Production Prediction from Dry Anaerobic Digestion of OFMSW," Sustainability, MDPI, vol. 14(8), pages 1-17, April.
    3. Shabib, Ahmad & Abdallah, Mohamed & Shanableh, Abdallah & Sartaj, Majid, 2022. "Effect of substrates and voltages on the performance of bio-electrochemical anaerobic digestion," Renewable Energy, Elsevier, vol. 198(C), pages 16-27.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D’ Silva, Tinku Casper & Isha, Adya & Chandra, Ram & Vijay, Virendra Kumar & Subbarao, Paruchuri Mohan V. & Kumar, Ritunesh & Chaudhary, Ved Prakash & Singh, Harjit & Khan, Abid Ali & Tyagi, Vinay Kum, 2021. "Enhancing methane production in anaerobic digestion through hydrogen assisted pathways – A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Negri, Camilla & Ricci, Marina & Zilio, Massimo & D'Imporzano, Giuliana & Qiao, Wei & Dong, Renjie & Adani, Fabrizio, 2020. "Anaerobic digestion of food waste for bio-energy production in China and Southeast Asia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    3. Elena Rossi & Isabella Pecorini & Giovanni Ferrara & Renato Iannelli, 2022. "Dry Anaerobic Digestion of the Organic Fraction of Municipal Solid Waste: Biogas Production Optimization by Reducing Ammonia Inhibition," Energies, MDPI, vol. 15(15), pages 1-17, July.
    4. Isabella Pecorini & Eleonora Peruzzi & Elena Albini & Serena Doni & Cristina Macci & Grazia Masciandaro & Renato Iannelli, 2020. "Evaluation of MSW Compost and Digestate Mixtures for a Circular Economy Application," Sustainability, MDPI, vol. 12(7), pages 1-18, April.
    5. Triolo, Jin M. & Ward, Alastair J. & Pedersen, Lene & Løkke, Mette M. & Qu, Haiyan & Sommer, Sven G., 2014. "Near Infrared Reflectance Spectroscopy (NIRS) for rapid determination of biochemical methane potential of plant biomass," Applied Energy, Elsevier, vol. 116(C), pages 52-57.
    6. O’Shea, Richard & Kilgallon, Ian & Wall, David & Murphy, Jerry D., 2016. "Quantification and location of a renewable gas industry based on digestion of wastes in Ireland," Applied Energy, Elsevier, vol. 175(C), pages 229-239.
    7. Santagata, R. & Ripa, M. & Ulgiati, S., 2017. "An environmental assessment of electricity production from slaughterhouse residues. Linking urban, industrial and waste management systems," Applied Energy, Elsevier, vol. 186(P2), pages 175-188.
    8. Tonanzi, B. & Gallipoli, A. & Gianico, A. & Montecchio, D. & Pagliaccia, P. & Rossetti, S. & Braguglia, C.M., 2021. "Elucidating the key factors in semicontinuous anaerobic digestion of urban biowaste: The crucial role of sludge addition in process stability, microbial community enrichment and methane production," Renewable Energy, Elsevier, vol. 179(C), pages 272-284.
    9. Aragón-Briceño, C.I. & Pozarlik, A.K. & Bramer, E.A. & Niedzwiecki, Lukasz & Pawlak-Kruczek, H. & Brem, G., 2021. "Hydrothermal carbonization of wet biomass from nitrogen and phosphorus approach: A review," Renewable Energy, Elsevier, vol. 171(C), pages 401-415.
    10. Dandikas, Vasilis & Heuwinkel, Hauke & Lichti, Fabian & Eckl, Thomas & Drewes, Jörg E. & Koch, Konrad, 2018. "Correlation between hydrolysis rate constant and chemical composition of energy crops," Renewable Energy, Elsevier, vol. 118(C), pages 34-42.
    11. Allen, Eoin & Wall, David M. & Herrmann, Christiane & Murphy, Jerry D., 2016. "A detailed assessment of resource of biomethane from first, second and third generation substrates," Renewable Energy, Elsevier, vol. 87(P1), pages 656-665.
    12. Simioni, Taysnara & Agustini, Caroline Borges & Dettmer, Aline & Gutterres, Mariliz, 2022. "Enhancement of biogas production by anaerobic co-digestion of leather waste with raw and pretreated wheat straw," Energy, Elsevier, vol. 253(C).
    13. Macintosh, C. & Astals, S. & Sembera, C. & Ertl, A. & Drewes, J.E. & Jensen, P.D. & Koch, K., 2019. "Successful strategies for increasing energy self-sufficiency at Grüneck wastewater treatment plant in Germany by food waste co-digestion and improved aeration," Applied Energy, Elsevier, vol. 242(C), pages 797-808.
    14. Alves, Ingrid R.F.S. & Mahler, Claudio F. & Oliveira, Luciano B. & Reis, Marcelo M. & Bassin, João P., 2022. "Investigating the effect of crude glycerol from biodiesel industry on the anaerobic co-digestion of sewage sludge and food waste in ternary mixtures," Energy, Elsevier, vol. 241(C).
    15. Nour El Houda Chaher & Safwat Hemidat & Qahtan Thabit & Mehrez Chakchouk & Abdallah Nassour & Moktar Hamdi & Michael Nelles, 2020. "Potential of Sustainable Concept for Handling Organic Waste in Tunisia," Sustainability, MDPI, vol. 12(19), pages 1-31, October.
    16. Romero-Güiza, M.S. & Peces, M. & Astals, S. & Benavent, J. & Valls, J. & Mata-Alvarez, J., 2014. "Implementation of a prototypal optical sorter as core of the new pre-treatment configuration of a mechanical–biological treatment plant treating OFMSW through anaerobic digestion," Applied Energy, Elsevier, vol. 135(C), pages 63-70.
    17. Kumar, Atul & Samadder, S.R., 2020. "Performance evaluation of anaerobic digestion technology for energy recovery from organic fraction of municipal solid waste: A review," Energy, Elsevier, vol. 197(C).
    18. Su, Guandong & Chan, Claire & He, Jianzhong, 2022. "Enhanced biobutanol production from starch waste via orange peel doping," Renewable Energy, Elsevier, vol. 193(C), pages 576-583.
    19. Inna Pitak & Gintaras Denafas & Arūnas Baltušnikas & Marius Praspaliauskas & Stasė-Irena Lukošiūtė, 2023. "Proposal for Implementation of Extraction Mechanism of Raw Materials during Landfill Mining and Its Application in Alternative Fuel Production," Sustainability, MDPI, vol. 15(5), pages 1-22, March.
    20. Liu, Yueling & Feng, Kai & Li, Huan, 2019. "Rapid conversion from food waste to electricity by combining anaerobic fermentation and liquid catalytic fuel cell," Applied Energy, Elsevier, vol. 233, pages 395-402.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2639-:d:337421. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.