IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i23p9900-d451680.html
   My bibliography  Save this article

Smart Security in the Smart City

Author

Listed:
  • Natalia Moch

    (Faculty of Security, Logistics and Management, Institute of Security and Defense, Military University of Technology in Warsaw, 00-908 Warsaw, Poland)

  • Wioletta Wereda

    (Faculty of Security, Logistics, and Management, Institute of Organization and Management, Military University of Technology in Warsaw, 00-908 Warsaw, Poland)

Abstract

This article is focused on whether and to what extent the measures taken by cities’ shape their creative and intelligent space safety. For this purpose, research was carried out among medium and large cities in Poland. The analysis of the obtained results showed that, although projects shaping the creative and intelligent space of medium and large cities are undertaken in order to increase the broadly understood security, they are not treated as a priority. Subsequently, security projects implemented in the selected cities were presented.

Suggested Citation

  • Natalia Moch & Wioletta Wereda, 2020. "Smart Security in the Smart City," Sustainability, MDPI, vol. 12(23), pages 1-15, November.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:23:p:9900-:d:451680
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/23/9900/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/23/9900/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guido Perboli & Mariangela Rosano, 2020. "A Taxonomic Analysis of Smart City Projects in North America and Europe," Sustainability, MDPI, vol. 12(18), pages 1-23, September.
    2. Jooseok Oh, 2020. "Smart City as a Tool of Citizen-Oriented Urban Regeneration: Framework of Preliminary Evaluation and Its Application," Sustainability, MDPI, vol. 12(17), pages 1-20, August.
    3. Lee, Jung Hoon & Hancock, Marguerite Gong & Hu, Mei-Chih, 2014. "Towards an effective framework for building smart cities: Lessons from Seoul and San Francisco," Technological Forecasting and Social Change, Elsevier, vol. 89(C), pages 80-99.
    4. Manuel Castells, 2000. "Urban sustainability in the information age," City, Taylor & Francis Journals, vol. 4(1), pages 118-122, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Justyna Żywiołek & Francesco Schiavone, 2021. "Perception of the Quality of Smart City Solutions as a Sense of Residents’ Safety," Energies, MDPI, vol. 14(17), pages 1-16, September.
    2. Patricia Janoskova & Katarina Repkova Stofkova & Martina Kovacikova & Jana Stofkova & Kristina Kovacikova, 2021. "The Concept of a Smart City Communication in the Form of an Urban Mobile Application," Sustainability, MDPI, vol. 13(17), pages 1-16, August.
    3. Jarosław Stelmach & Natalia Moch, 2022. "Time in Responding to Terrorist Attacks in Cities," Sustainability, MDPI, vol. 14(24), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vu, Khuong & Hartley, Kris, 2018. "Promoting smart cities in developing countries: Policy insights from Vietnam," Telecommunications Policy, Elsevier, vol. 42(10), pages 845-859.
    2. Jiabin Liu & Ji Han, 2017. "Does a Certain Rule Exist in the Long-Term Change of a City’s Livability? Evidence from New York, Tokyo, and Shanghai," Sustainability, MDPI, vol. 9(10), pages 1-15, September.
    3. Sabina Baraniewicz-Kotasińska, 2022. "The Scandinavian Third Way as a Proposal for Sustainable Smart City Development—A Case Study of Aarhus City," Sustainability, MDPI, vol. 14(6), pages 1-24, March.
    4. Khalid Aada, 0000. "Reflective teaching practices between theory and reality in a demanding society," Proceedings of International Academic Conferences 11113225, International Institute of Social and Economic Sciences.
    5. Kumar, Harish & Singh, Manoj Kumar & Gupta, M.P. & Madaan, Jitendra, 2020. "Moving towards smart cities: Solutions that lead to the Smart City Transformation Framework," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    6. Łukasz Brzeziński & Magdalena Krystyna Wyrwicka, 2022. "Fundamental Directions of the Development of the Smart Cities Concept and Solutions in Poland," Energies, MDPI, vol. 15(21), pages 1-52, November.
    7. Kajikawa, Yuya & Mejia, Cristian & Wu, Mengjia & Zhang, Yi, 2022. "Academic landscape of Technological Forecasting and Social Change through citation network and topic analyses," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    8. Jaewon Lim & Jae Hong Kim, 2019. "Joint Determination of Residential Relocation and Commuting: A Forecasting Experiment for Sustainable Land Use and Transportation Planning," Sustainability, MDPI, vol. 11(1), pages 1-24, January.
    9. Renata Biadacz & Marek Biadacz, 2021. "Implementation of “Smart” Solutions and An Attempt to Measure Them: A Case Study of Czestochowa, Poland," Energies, MDPI, vol. 14(18), pages 1-28, September.
    10. Margarida Rodrigues & Mário Franco, 2018. "Measuring the Performance in Creative Cities: Proposal of a Multidimensional Model," Sustainability, MDPI, vol. 10(11), pages 1-21, November.
    11. Joel Serey & Luis Quezada & Miguel Alfaro & Guillermo Fuertes & Rodrigo Ternero & Gustavo Gatica & Sebastian Gutierrez & Manuel Vargas, 2020. "Methodological Proposals for the Development of Services in a Smart City: A Literature Review," Sustainability, MDPI, vol. 12(24), pages 1-28, December.
    12. Mona Treude, 2021. "Sustainable Smart City—Opening a Black Box," Sustainability, MDPI, vol. 13(2), pages 1-15, January.
    13. Dejan Križaj & Miha Bratec & Peter Kopić & Tadej Rogelja, 2021. "A Technology-Based Innovation Adoption and Implementation Analysis of European Smart Tourism Projects: Towards a Smart Actionable Classification Model (SACM)," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    14. Habib M. Alshuwaikhat & Yusuf A. Adenle & Thamer Almuhaidib, 2022. "A Lifecycle-Based Smart Sustainable City Strategic Framework for Realizing Smart and Sustainability Initiatives in Riyadh City," Sustainability, MDPI, vol. 14(14), pages 1-17, July.
    15. Niusha Esmaeilpoorarabi & Tan Yigitcanlar & Mirko Guaralda, 2016. "Place quality and urban competitiveness symbiosis? A position paper," International Journal of Knowledge-Based Development, Inderscience Enterprises Ltd, vol. 7(1), pages 4-21.
    16. Bresciani, Stefano & Ferraris, Alberto & Del Giudice, Manlio, 2018. "The management of organizational ambidexterity through alliances in a new context of analysis: Internet of Things (IoT) smart city projects," Technological Forecasting and Social Change, Elsevier, vol. 136(C), pages 331-338.
    17. Abbate, Tindara & Cesaroni, Fabrizio & Cinici, Maria Cristina & Villari, Massimo, 2019. "Business models for developing smart cities. A fuzzy set qualitative comparative analysis of an IoT platform," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 183-193.
    18. Małgorzata Baran & Monika Kłos & Monika Chodorek & Karolina Marchlewska-Patyk, 2022. "The Resilient Smart City Model–Proposal for Polish Cities," Energies, MDPI, vol. 15(5), pages 1-23, March.
    19. Seung-Min Jung & Sungwoo Park & Seung-Won Jung & Eenjun Hwang, 2020. "Monthly Electric Load Forecasting Using Transfer Learning for Smart Cities," Sustainability, MDPI, vol. 12(16), pages 1-20, August.
    20. van den Buuse, Daniel & Kolk, Ans, 2019. "An exploration of smart city approaches by international ICT firms," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 220-234.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:23:p:9900-:d:451680. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.