IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i22p9457-d444603.html
   My bibliography  Save this article

Aerogel-Based Plasters and Energy Efficiency of Historic Buildings. Literature Review and Guidelines for Manufacturing Specimens Destined for Thermal Tests

Author

Listed:
  • Davide Del Curto

    (Department of Architecture and Urban Studies, Politecnico di Milano, 20133 Milano, Italy)

  • Valentina Cinieri

    (Department of Architecture and Urban Studies, Politecnico di Milano, 20133 Milano, Italy)

Abstract

This paper presents a literature review about aerogel-based products for building, focusing on the plasters used within the architectural restoration sector. Aerogel has entered the construction field in the last two decades as a component of many insulation products, due to its high thermal performance. Aerogel-based plasters allow the matching of high thermal performance and limited thickness. This makes them suitable when retrofitting an existing building and also when restoring a heritage building. We analyze the results of recent research, focusing on the most commonly used methods for assessing the thermal performances and durability of aerogel-based plasters. As a result of this review, we propose a guideline for manufacturing samples destined for laboratory tests.

Suggested Citation

  • Davide Del Curto & Valentina Cinieri, 2020. "Aerogel-Based Plasters and Energy Efficiency of Historic Buildings. Literature Review and Guidelines for Manufacturing Specimens Destined for Thermal Tests," Sustainability, MDPI, vol. 12(22), pages 1-23, November.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:22:p:9457-:d:444603
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/22/9457/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/22/9457/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Berardi, Umberto & Nosrati, Roya Hamideh, 2018. "Long-term thermal conductivity of aerogel-enhanced insulating materials under different laboratory aging conditions," Energy, Elsevier, vol. 147(C), pages 1188-1202.
    2. Cinzia Buratti & Elisa Moretti & Elisa Belloni & Fabrizio Agosti, 2014. "Development of Innovative Aerogel Based Plasters: Preliminary Thermal and Acoustic Performance Evaluation," Sustainability, MDPI, vol. 6(9), pages 1-14, September.
    3. Kaushika, N. D. & Sumathy, K., 2003. "Solar transparent insulation materials: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(4), pages 317-351, August.
    4. Cuce, Erdem & Cuce, Pinar Mert & Wood, Christopher J. & Riffat, Saffa B., 2014. "Toward aerogel based thermal superinsulation in buildings: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 273-299.
    5. Rosa Agliata & Alfonso Marino & Luigi Mollo & Paolo Pariso, 2020. "Historic Building Energy Audit and Retrofit Simulation with Hemp-Lime Plaster—A Case Study," Sustainability, MDPI, vol. 12(11), pages 1-15, June.
    6. Adamczyk, Janusz & Dylewski, Robert, 2017. "The impact of thermal insulation investments on sustainability in the construction sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 421-429.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thomas Stahl & Karim Ghazi Wakili & Ernst Heiduk, 2021. "Stability Relevant Properties of an SiO 2 Aerogel-Based Rendering and Its Application on Buildings," Sustainability, MDPI, vol. 13(18), pages 1-12, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, Dileep & Alam, Morshed & Zou, Patrick X.W. & Sanjayan, Jay G. & Memon, Rizwan Ahmed, 2020. "Comparative analysis of building insulation material properties and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    2. Pacheco-Torgal, F., 2017. "High tech startup creation for energy efficient built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 618-629.
    3. Yang, Jiangming & Wu, Huijun & Xu, Xinhua & Huang, Gongsheng & Xu, Tao & Guo, Sitong & Liang, Yuying, 2019. "Numerical and experimental study on the thermal performance of aerogel insulating panels for building energy efficiency," Renewable Energy, Elsevier, vol. 138(C), pages 445-457.
    4. Moretti, Elisa & Belloni, Elisa & Agosti, Fabrizio, 2016. "Innovative mineral fiber insulation panels for buildings: Thermal and acoustic characterization," Applied Energy, Elsevier, vol. 169(C), pages 421-432.
    5. Guo, Haijin & Cai, Shanshan & Li, Kun & Liu, Zhongming & Xia, Lizhi & Xiong, Jiazhuang, 2020. "Simultaneous test and visual identification of heat and moisture transport in several types of thermal insulation," Energy, Elsevier, vol. 197(C).
    6. Sun, Yanyi & Wilson, Robin & Wu, Yupeng, 2018. "A Review of Transparent Insulation Material (TIM) for building energy saving and daylight comfort," Applied Energy, Elsevier, vol. 226(C), pages 713-729.
    7. Wang, Yingying & Huang, Jinjin & Wang, Dengjia & Liu, Yanfeng & Zhao, Zejiao & Liu, Jiaping, 2019. "Experimental investigation on thermal conductivity of aerogel-incorporated concrete under various hygrothermal environment," Energy, Elsevier, vol. 188(C).
    8. Huang, Yu & Niu, Jian-lei, 2015. "Application of super-insulating translucent silica aerogel glazing system on commercial building envelope of humid subtropical climates – Impact on space cooling load," Energy, Elsevier, vol. 83(C), pages 316-325.
    9. Paulos, Jason & Berardi, Umberto, 2020. "Optimizing the thermal performance of window frames through aerogel-enhancements," Applied Energy, Elsevier, vol. 266(C).
    10. Zhou, Yuekuan & Zheng, Siqian, 2020. "Uncertainty study on thermal and energy performances of a deterministic parameters based optimal aerogel glazing system using machine-learning method," Energy, Elsevier, vol. 193(C).
    11. Zhou, Liqun & Wang, Yiping & Huang, Qunwu, 2019. "Parametric analysis on the performance of flat plate collector with transparent insulation material," Energy, Elsevier, vol. 174(C), pages 534-542.
    12. Martina Záleská & Milena Pavlíková & Martin Vyšvařil & Zbyšek Pavlík, 2021. "Effect of Aggregate and Binder Type on the Functional and Durability Parameters of Lightweight Repair Mortars," Sustainability, MDPI, vol. 13(21), pages 1-17, October.
    13. M. M. Sarafraz & Alireza Dareh Baghi & Mohammad Reza Safaei & Arturo S. Leon & R. Ghomashchi & Marjan Goodarzi & Cheng-Xian Lin, 2019. "Assessment of Iron Oxide (III)–Therminol 66 Nanofluid as a Novel Working Fluid in a Convective Radiator Heating System for Buildings," Energies, MDPI, vol. 12(22), pages 1-13, November.
    14. Fan, Ruijin & Wan, Minghan & Zhou, Tian & Zheng, Nianben & Sun, Zhiqiang, 2024. "Graphene-enhanced phase change material systems: Minimizing optical and thermal losses for solar thermal applications," Energy, Elsevier, vol. 289(C).
    15. Ruth M. Saint & Céline Garnier & Francesco Pomponi & John Currie, 2018. "Thermal Performance through Heat Retention in Integrated Collector-Storage Solar Water Heaters: A Review," Energies, MDPI, vol. 11(6), pages 1-26, June.
    16. Alexander V. Fedyukhin & Konstantin V. Strogonov & Olga V. Soloveva & Sergei A. Solovev & Irina G. Akhmetova & Umberto Berardi & Mark D. Zaitsev & Daniil V. Grigorev, 2022. "Aerogel Product Applications for High-Temperature Thermal Insulation," Energies, MDPI, vol. 15(20), pages 1-15, October.
    17. Cuce, Pinar Mert & Riffat, Saffa, 2016. "A state of the art review of evaporative cooling systems for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1240-1249.
    18. Santu Golder & Ramadas Narayanan & Md. Rashed Hossain & Mohammad Rofiqul Islam, 2021. "Experimental and CFD Investigation on the Application for Aerogel Insulation in Buildings," Energies, MDPI, vol. 14(11), pages 1-16, June.
    19. Cuce, Erdem, 2016. "Toward multi-functional PV glazing technologies in low/zero carbon buildings: Heat insulation solar glass – Latest developments and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1286-1301.
    20. Miroslav Čekon & Richard Slávik, 2017. "A Non-Ventilated Solar Façade Concept Based on Selective and Transparent Insulation Material Integration: An Experimental Study," Energies, MDPI, vol. 10(6), pages 1-21, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:22:p:9457-:d:444603. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.