IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i20p8440-d427432.html
   My bibliography  Save this article

Multi-Port DC-DC and DC-AC Converters for Large-Scale Integration of Renewable Power Generation

Author

Listed:
  • Fahad Alsokhiry

    (Renewable Energy Research Group and Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Grain Philip Adam

    (NEOM.com, An Nakheel, Riyadh 11564, Saudi Arabia)

Abstract

Numerous research studies on high capacity DC-DC converters have been put forward in recent years, targeting multi-terminal medium-voltage direct current (MVDC) and high-voltage direct current (HVDC) systems, in which renewable power plants can be integrated at both medium-voltage (MV) and high-voltage (HV) DC and AC terminals; hence, leading to complex hybrid AC-DC systems. Multi-port converters (MPCs) offer the means to promote and accelerate renewable energy and smart grids applications due to their increased control flexibilities. In this paper, a family of MPCs is proposed in order to act as a hybrid hub at critical nodes of complex multi-terminal MVDC and HVDC grids. The proposed MPCs provide several controllable DC voltages from constant or variable DC or AC voltage sources. The theoretical analysis and operation scenarios of the proposed MPC are discussed and validated with the aid of MATLAB-SIMULINK simulations, and further corroborated using experimental results from scale down prototype. Theoretical analysis and discussions, quantitative simulations, and experimental results show that the MPCs offer high degree of control flexibilities during normal operation, including the capacity to reroute active or DC power flow between any arbitrary AC and DC terminals, and through a particular sub-converter with sufficient precision. Critical discussions of the experimental results conclude that the DC fault responses of the MPCs vary with the topology of the converter adopted in the sub-converters. It has been established that a DC fault at high-voltage DC terminal exposes sub-converters 1 and 2 to extremely high currents; therefore, converters with DC fault current control capability are required to decouple the healthy sub-converters from the faulted one and their respective fault dynamics. On the other hand, a DC fault at the low-voltage DC terminal exposes the healthy upper sub-converter to excessive voltage stresses; therefore, sub-converters with bipolar cells, which possess the capacity for controlled operation with variable and reduced DC voltage over wide range are required. In both fault causes, continued operation without interruption to power flow during DC fault is not possible due to excessive over-current or over-voltage during fault period; however, it is possible to minimize the interruption. The above findings and contributions of this work have been further elaborated in the conclusions.

Suggested Citation

  • Fahad Alsokhiry & Grain Philip Adam, 2020. "Multi-Port DC-DC and DC-AC Converters for Large-Scale Integration of Renewable Power Generation," Sustainability, MDPI, vol. 12(20), pages 1-21, October.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:20:p:8440-:d:427432
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/20/8440/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/20/8440/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hao Wang & Yue Wang & Guozhao Duan & Weihao Hu & Wenti Wang & Zhe Chen, 2017. "An Improved Droop Control Method for Multi-Terminal VSC-HVDC Converter Stations," Energies, MDPI, vol. 10(7), pages 1-13, June.
    2. Sungchul Hwang & Sungyoon Song & Gilsoo Jang & Minhan Yoon, 2019. "An Operation Strategy of the Hybrid Multi-Terminal HVDC for Contingency," Energies, MDPI, vol. 12(11), pages 1-22, May.
    3. C. Anuradha & N. Chellammal & Md Saquib Maqsood & S. Vijayalakshmi, 2019. "Design and Analysis of Non-Isolated Three-Port SEPIC Converter for Integrating Renewable Energy Sources," Energies, MDPI, vol. 12(2), pages 1-32, January.
    4. Affam, Azuka & Buswig, Yonis M. & Othman, Al-Khalid Bin Hj & Julai, Norhuzaimin Bin & Qays, Ohirul, 2021. "A review of multiple input DC-DC converter topologies linked with hybrid electric vehicles and renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    5. Xiaohe Wang & Liang Chen & Dan Sun & Li Zhang & Heng Nian, 2019. "A Modified Self-Synchronized Synchronverter in Unbalanced Power Grids with Balanced Currents and Restrained Power Ripples," Energies, MDPI, vol. 12(5), pages 1-18, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maysam Abbasi & Ehsan Abbasi & Li Li & Behrouz Tousi, 2021. "Design and Analysis of a High-Gain Step-Up/Down Modular DC–DC Converter with Continuous Input Current and Decreased Voltage Stress on Power Switches and Switched-Capacitors," Sustainability, MDPI, vol. 13(9), pages 1-19, May.
    2. Stefano Bifaretti & Vincenzo Bonaiuto & Sabino Pipolo & Cristina Terlizzi & Pericle Zanchetta & Francesco Gallinelli & Silvio Alessandroni, 2021. "Power Flow Management by Active Nodes: A Case Study in Real Operating Conditions," Energies, MDPI, vol. 14(15), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Teuvo Suntio & Tuomas Messo, 2019. "Power Electronics in Renewable Energy Systems," Energies, MDPI, vol. 12(10), pages 1-5, May.
    2. Gaurav Kumar Roy & Marco Pau & Ferdinanda Ponci & Antonello Monti, 2021. "A Two-Step State Estimation Algorithm for Hybrid AC-DC Distribution Grids," Energies, MDPI, vol. 14(7), pages 1-21, April.
    3. Belqasem Aljafari & Gunapriya Devarajan & Sivaranjani Subramani & Subramaniyaswamy Vairavasundaram, 2023. "Intelligent RBF-Fuzzy Controller Based Non-Isolated DC-DC Multi-Port Converter for Renewable Energy Applications," Sustainability, MDPI, vol. 15(12), pages 1-22, June.
    4. Saad Khan Baloch & Abdul Sattar Larik & Mukhtiar Ahmed Mahar, 2023. "Analyzing the Effectiveness of Single Active Bridge DC-DC Converter under Transient and Load Variation," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    5. Weipeng Yang & Aimin Zhang & Jungang Li & Guoqi Li & Hang Zhang & Jianhua Wang, 2017. "Integral Plus Resonant Sliding Mode Direct Power Control for VSC-HVDC Systems under Unbalanced Grid Voltage Conditions," Energies, MDPI, vol. 10(10), pages 1-17, October.
    6. Mehmet Ali Yildirim & Marzena Nowak-Ocłoń, 2020. "Modified Maximum Power Point Tracking Algorithm under Time-Varying Solar Irradiation," Energies, MDPI, vol. 13(24), pages 1-15, December.
    7. Hossein Afshari & Oleksandr Husev & Oleksandr Matiushkin & Dmitri Vinnikov, 2022. "A Review of Hybrid Converter Topologies," Energies, MDPI, vol. 15(24), pages 1-16, December.
    8. Efaf Bikdeli & Md. Rabiul Islam & Md. Moktadir Rahman & Kashem M. Muttaqi, 2022. "State of the Art of the Techniques for Grid Forming Inverters to Solve the Challenges of Renewable Rich Power Grids," Energies, MDPI, vol. 15(5), pages 1-25, March.
    9. Yunyang Xu & Heng Nian & Yangming Wang & Dan Sun, 2020. "Impedance Modeling and Stability Analysis of VSG Controlled Grid-Connected Converters with Cascaded Inner Control Loop," Energies, MDPI, vol. 13(19), pages 1-21, October.
    10. Joaquin Soldado-Guamán & Victor Herrera-Perez & Mayra Pacheco-Cunduri & Alejandro Paredes-Camacho & Miguel Delgado-Prieto & Jorge Hernandez-Ambato, 2023. "Multiple Input-Single Output DC-DC Converters Assessment for Low Power Renewable Sources Integration," Energies, MDPI, vol. 16(4), pages 1-28, February.
    11. Marcos Vinicius Mosconi Ewerling & Telles Brunelli Lazzarin & Carlos Henrique Illa Font, 2022. "Modular SEPIC-Based Isolated dc–dc Converter with Reduced Voltage Stresses across the Semiconductors," Energies, MDPI, vol. 15(21), pages 1-21, October.
    12. Vibha Kamaraj & N. Chellammal & Bharatiraja Chokkalingam & Josiah Lange Munda, 2020. "Minimization of Cross-Regulation in PV and Battery Connected Multi-Input Multi-Output DC to DC Converter," Energies, MDPI, vol. 13(24), pages 1-29, December.
    13. Leandro Almeida Vasconcelos & João Alberto Passos Filho & André Luis Marques Marcato & Giovani Santiago Junqueira, 2021. "A Full-Newton AC-DC Power Flow Methodology for HVDC Multi-Terminal Systems and Generic DC Network Representation," Energies, MDPI, vol. 14(6), pages 1-17, March.
    14. Sen Song & Yihua Hu & Kai Ni & Joseph Yan & Guipeng Chen & Huiqing Wen & Xianming Ye, 2018. "Multi-Port High Voltage Gain Modular Power Converter for Offshore Wind Farms," Sustainability, MDPI, vol. 10(7), pages 1-15, June.
    15. Mahdi Shademan & Alireza Jalilian & Mehdi Savaghebi, 2021. "Improved Control Method for Voltage Regulation and Harmonic Mitigation Using Electric Spring," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
    16. Umar Javed & Neelam Mughees & Muhammad Jawad & Omar Azeem & Ghulam Abbas & Nasim Ullah & Md. Shahariar Chowdhury & Kuaanan Techato & Khurram Shabih Zaidi & Umair Tahir, 2021. "A Systematic Review of Key Challenges in Hybrid HVAC–HVDC Grids," Energies, MDPI, vol. 14(17), pages 1-27, September.
    17. Marta Haro-Larrode & Maider Santos-Mugica & Agurtzane Etxegarai & Pablo Eguia, 2020. "Methodology for Tuning MTDC Supervisory and Frequency-Response Control Systems at Terminal Level under Over-Frequency Events," Energies, MDPI, vol. 13(11), pages 1-20, June.
    18. CH Hussaian Basha & C Rani, 2020. "Different Conventional and Soft Computing MPPT Techniques for Solar PV Systems with High Step-Up Boost Converters: A Comprehensive Analysis," Energies, MDPI, vol. 13(2), pages 1-27, January.
    19. Peyman Koohi & Alan J. Watson & Jon C. Clare & Thiago Batista Soeiro & Patrick W. Wheeler, 2023. "A Survey on Multi-Active Bridge DC-DC Converters: Power Flow Decoupling Techniques, Applications, and Challenges," Energies, MDPI, vol. 16(16), pages 1-47, August.
    20. Reddi Khasim, Shaik & Dhanamjayulu, C., 2021. "Selection parameters and synthesis of multi-input converters for electric vehicles: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:20:p:8440-:d:427432. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.