IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i24p6722-d465297.html
   My bibliography  Save this article

Modified Maximum Power Point Tracking Algorithm under Time-Varying Solar Irradiation

Author

Listed:
  • Mehmet Ali Yildirim

    (Department of Energy, Cracow University of Technology, 31-864 Kraków, Poland)

  • Marzena Nowak-Ocłoń

    (Department of Energy, Cracow University of Technology, 31-864 Kraków, Poland)

Abstract

Solar photovoltaic (PV) energy is one of the most viable renewable energy sources, considered less polluting than fossil energy. However, the average power conversion efficiency of PV systems is between 15% and 20%, and they must operate with high efficiency. Photovoltaic cells have non-linear voltage–current characteristics that are dependent on environmental factors such as solar irradiation and temperature, and have low efficiency. Therefore, it becomes crucial to harvest the maximum power from PV panels. This paper aims to study and analyze the most common and well-known maximum power point tracking (MPPT) algorithms, perturb and observe (P&O) and incremental conductance (IncCond). These algorithms were found to be easy to implement, low-cost techniques suitable for large- and medium-sized photovoltaic applications. The algorithms were tested and compared dynamically using MATLAB/Simulink software. In order to overcome the low performance of the P&O and IncCond methods under time-varying and fast-changing solar irradiation, several modifications are proposed. Results show an improvement in the tracking and overall system efficiencies and a shortened response time compared with original techniques. In addition, the proposed algorithms minimize the oscillations around the maximum power point (MPP), and the power converges faster.

Suggested Citation

  • Mehmet Ali Yildirim & Marzena Nowak-Ocłoń, 2020. "Modified Maximum Power Point Tracking Algorithm under Time-Varying Solar Irradiation," Energies, MDPI, vol. 13(24), pages 1-15, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6722-:d:465297
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/24/6722/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/24/6722/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saima Siouane & Slaviša Jovanović & Philippe Poure, 2018. "Service Continuity of PV Synchronous Buck/Buck-Boost Converter with Energy Storage †," Energies, MDPI, vol. 11(6), pages 1-20, May.
    2. John Macaulay & Zhongfu Zhou, 2018. "A Fuzzy Logical-Based Variable Step Size P&O MPPT Algorithm for Photovoltaic System," Energies, MDPI, vol. 11(6), pages 1-15, May.
    3. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    4. C. Anuradha & N. Chellammal & Md Saquib Maqsood & S. Vijayalakshmi, 2019. "Design and Analysis of Non-Isolated Three-Port SEPIC Converter for Integrating Renewable Energy Sources," Energies, MDPI, vol. 12(2), pages 1-32, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed Derbeli & Cristian Napole & Oscar Barambones, 2023. "A Fuzzy Logic Control for Maximum Power Point Tracking Algorithm Validated in a Commercial PV System," Energies, MDPI, vol. 16(2), pages 1-14, January.
    2. Eneko Artetxe & Jokin Uralde & Oscar Barambones & Isidro Calvo & Imanol Martin, 2023. "Maximum Power Point Tracker Controller for Solar Photovoltaic Based on Reinforcement Learning Agent with a Digital Twin," Mathematics, MDPI, vol. 11(9), pages 1-21, May.
    3. Mohamed Derbeli & Cristian Napole & Oscar Barambones & Jesus Sanchez & Isidro Calvo & Pablo Fernández-Bustamante, 2021. "Maximum Power Point Tracking Techniques for Photovoltaic Panel: A Review and Experimental Applications," Energies, MDPI, vol. 14(22), pages 1-31, November.
    4. Dominika Siwiec & Andrzej Pacana, 2021. "Model of Choice Photovoltaic Panels Considering Customers’ Expectations," Energies, MDPI, vol. 14(18), pages 1-32, September.
    5. Alfredo Gil-Velasco & Carlos Aguilar-Castillo, 2021. "A Modification of the Perturb and Observe Method to Improve the Energy Harvesting of PV Systems under Partial Shading Conditions," Energies, MDPI, vol. 14(9), pages 1-12, April.
    6. Grzegorz Ostasz & Dominika Siwiec & Andrzej Pacana, 2022. "Model to Determine the Best Modifications of Products with Consideration Customers’ Expectations," Energies, MDPI, vol. 15(21), pages 1-21, October.
    7. Yildirim, Mehmet Ali & Cebula, Artur & Sułowicz, Maciej, 2022. "A cooling design for photovoltaic panels – Water-based PV/T system," Energy, Elsevier, vol. 256(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. CH Hussaian Basha & C Rani, 2020. "Different Conventional and Soft Computing MPPT Techniques for Solar PV Systems with High Step-Up Boost Converters: A Comprehensive Analysis," Energies, MDPI, vol. 13(2), pages 1-27, January.
    2. Qin, Caiyan & Kim, Joong Bae & Lee, Bong Jae, 2019. "Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids," Renewable Energy, Elsevier, vol. 143(C), pages 24-33.
    3. Merad, Faycel & Labar, Hocine & Samira KELAIAIA, Mounia & Necaibia, Salah & Djelailia, Okba, 2019. "A maximum power control based on flexible collector applied to concentrator solar power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 315-331.
    4. Zhao, Kai & Tian, Zhenyu & Zhang, Jinrui & Lu, Buchu & Hao, Yong, 2023. "Methanol steam reforming reactor with fractal tree-shaped structures for photovoltaic–thermochemical hybrid power generation," Applied Energy, Elsevier, vol. 330(PB).
    5. Ju, Xing & Abd El-Samie, Mostafa M. & Xu, Chao & Yu, Hangyu & Pan, Xinyu & Yang, Yongping, 2020. "A fully coupled numerical simulation of a hybrid concentrated photovoltaic/thermal system that employs a therminol VP-1 based nanofluid as a spectral beam filter," Applied Energy, Elsevier, vol. 264(C).
    6. Aqachmar, Zineb & Allouhi, Amine & Jamil, Abdelmajid & Gagouch, Belgacem & Kousksou, Tarik, 2019. "Parabolic trough solar thermal power plant Noor I in Morocco," Energy, Elsevier, vol. 178(C), pages 572-584.
    7. Allen Jong-Woei Whang & Tsai-Hsien Yang & Zhong-Hao Deng & Yi-Yung Chen & Wei-Chieh Tseng & Chun-Han Chou, 2019. "A Review of Daylighting System: For Prototype Systems Performance and Development," Energies, MDPI, vol. 12(15), pages 1-34, July.
    8. David Saldivia & Robert A. Taylor, 2023. "A Novel Dual Receiver–Storage Design for Concentrating Solar Thermal Plants Using Beam-Down Optics," Energies, MDPI, vol. 16(10), pages 1-23, May.
    9. Wang, Ruilin & Sun, Jie & Hong, Hui, 2019. "Proposal of solar-aided coal-fired power generation system with direct steam generation and active composite sun-tracking," Renewable Energy, Elsevier, vol. 141(C), pages 596-612.
    10. Arias, I. & Cardemil, J. & Zarza, E. & Valenzuela, L. & Escobar, R., 2022. "Latest developments, assessments and research trends for next generation of concentrated solar power plants using liquid heat transfer fluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    11. Eneko Artetxe & Jokin Uralde & Oscar Barambones & Isidro Calvo & Imanol Martin, 2023. "Maximum Power Point Tracker Controller for Solar Photovoltaic Based on Reinforcement Learning Agent with a Digital Twin," Mathematics, MDPI, vol. 11(9), pages 1-21, May.
    12. Gutiérrez, R.E. & Haro, P. & Gómez-Barea, A., 2021. "Techno-economic and operational assessment of concentrated solar power plants with a dual supporting system," Applied Energy, Elsevier, vol. 302(C).
    13. Martínez-Merino, Paloma & Alcántara, Rodrigo & Gómez-Larrán, Pedro & Carrillo-Berdugo, Iván & Navas, Javier, 2022. "MoS2-based nanofluids as heat transfer fluid in parabolic trough collector technology," Renewable Energy, Elsevier, vol. 188(C), pages 721-730.
    14. Yanping, Zhang & Yuxuan, Chen & Chongzhe, Zou & Hu, Xiao & Falcoz, Quentin & Neveu, Pierre & Cheng, Zhang & Xiaohong, Huang, 2021. "Experimental investigation on heat-transfer characteristics of a cylindrical cavity receiver with pressurized air in helical pipe," Renewable Energy, Elsevier, vol. 163(C), pages 320-330.
    15. Elmorsy, Louay & Morosuk, Tatiana & Tsatsaronis, George, 2022. "Comparative exergoeconomic evaluation of integrated solar combined-cycle (ISCC) configurations," Renewable Energy, Elsevier, vol. 185(C), pages 680-691.
    16. Sánchez-Amores, Ana & Martinez-Piazuelo, Juan & Maestre, José M. & Ocampo-Martinez, Carlos & Camacho, Eduardo F. & Quijano, Nicanor, 2023. "Coalitional model predictive control of parabolic-trough solar collector fields with population-dynamics assistance," Applied Energy, Elsevier, vol. 334(C).
    17. Gao, Datong & Li, Jing & Ren, Xiao & Hu, Tianxiang & Pei, Gang, 2022. "A novel direct steam generation system based on the high-vacuum insulated flat plate solar collector," Renewable Energy, Elsevier, vol. 197(C), pages 966-977.
    18. Xiao, Tingyu & Liu, Chao & Wang, Xurong & Wang, Shukun & Xu, Xiaoxiao & Li, Qibin & Li, Xiaoxiao, 2022. "Life cycle assessment of the solar thermal power plant integrated with air-cooled supercritical CO2 Brayton cycle," Renewable Energy, Elsevier, vol. 182(C), pages 119-133.
    19. Lisbona, Pilar & Bailera, Manuel & Hills, Thomas & Sceats, Mark & Díez, Luis I. & Romeo, Luis M., 2020. "Energy consumption minimization for a solar lime calciner operating in a concentrated solar power plant for thermal energy storage," Renewable Energy, Elsevier, vol. 156(C), pages 1019-1027.
    20. Sylvain Rodat & Richard Thonig, 2024. "Status of Concentrated Solar Power Plants Installed Worldwide: Past and Present Data," Clean Technol., MDPI, vol. 6(1), pages 1-14, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6722-:d:465297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.