IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i11p2042-d234987.html
   My bibliography  Save this article

An Operation Strategy of the Hybrid Multi-Terminal HVDC for Contingency

Author

Listed:
  • Sungchul Hwang

    (School of Electrical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea)

  • Sungyoon Song

    (School of Electrical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea)

  • Gilsoo Jang

    (School of Electrical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea)

  • Minhan Yoon

    (Department of Electrical Engineering, Tongmyong University, 428 Sinseon-ro, Nam-gu, Busan 48520, Korea)

Abstract

The application of the direct current (DC) transmission is increasing through the interconnection between grids or the renewable energy resource integration. Various types of DC transmission topology are researched, and the hybrid multi-terminal high voltage DC (HVDC), called the “MTDC”, is one of the research subjects. The hybrid multi-terminal HVDC is the MTDC system that is composed with the Line Commutated Converter (LCC) and Voltage Source Converter (VSC). Most hybrid MTDC research has been focused on the connection of the renewable energy generation sources, especially offshore wind farms. However, the DC grid built with a hybrid MTDC was recently proposed due to the development of the converter technology. Therefore, the DC grid is expected to be able to substitute some parts of the transmission grid instead of the alternating current (AC) system, and the operation strategies of the DC grid are still being researched. The DC grid has the advantage of being able to control the power flow, which can even improve the stability of the connected AC system. The dynamic model is required to analyze the improvement of the AC system by the operation strategy of the hybrid MTDC, however, there is no generic model for the system. In this paper, an operation strategy of the hybrid MTDC is proposed to improve the stability of the AC power system by increasing the utilization of parallel AC transmission lines under the contingency condition. Furthermore, studies on the modeling method for a hybrid MTDC analysis were performed. The proposed modeling method and operation strategy were verified in simulations for which a modified IEEE 39 bus test system was used. The improvement of transient stability by the proposed hybrid MTDC system was shown in the simulation results.

Suggested Citation

  • Sungchul Hwang & Sungyoon Song & Gilsoo Jang & Minhan Yoon, 2019. "An Operation Strategy of the Hybrid Multi-Terminal HVDC for Contingency," Energies, MDPI, vol. 12(11), pages 1-22, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2042-:d:234987
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/11/2042/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/11/2042/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Minhan Yoon & Yong-Tae Yoon & Gilsoo Jang, 2015. "A Study on Maximum Wind Power Penetration Limit in Island Power System Considering High-Voltage Direct Current Interconnections," Energies, MDPI, vol. 8(12), pages 1-16, December.
    2. Yingpei Liu & La Zhang & Haiping Liang, 2019. "DC Voltage Adaptive Droop Control Strategy for a Hybrid Multi-Terminal HVDC System," Energies, MDPI, vol. 12(3), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fahad Alsokhiry & Grain Philip Adam, 2020. "Multi-Port DC-DC and DC-AC Converters for Large-Scale Integration of Renewable Power Generation," Sustainability, MDPI, vol. 12(20), pages 1-21, October.
    2. Umar Javed & Neelam Mughees & Muhammad Jawad & Omar Azeem & Ghulam Abbas & Nasim Ullah & Md. Shahariar Chowdhury & Kuaanan Techato & Khurram Shabih Zaidi & Umair Tahir, 2021. "A Systematic Review of Key Challenges in Hybrid HVAC–HVDC Grids," Energies, MDPI, vol. 14(17), pages 1-27, September.
    3. Roland Ryndzionek & Łukasz Sienkiewicz, 2020. "Evolution of the HVDC Link Connecting Offshore Wind Farms to Onshore Power Systems," Energies, MDPI, vol. 13(8), pages 1-17, April.
    4. Leandro Almeida Vasconcelos & João Alberto Passos Filho & André Luis Marques Marcato & Giovani Santiago Junqueira, 2021. "A Full-Newton AC-DC Power Flow Methodology for HVDC Multi-Terminal Systems and Generic DC Network Representation," Energies, MDPI, vol. 14(6), pages 1-17, March.
    5. Gaurav Kumar Roy & Marco Pau & Ferdinanda Ponci & Antonello Monti, 2021. "A Two-Step State Estimation Algorithm for Hybrid AC-DC Distribution Grids," Energies, MDPI, vol. 14(7), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aiguo Tan & Xiangning Lin & Jinwen Sun & Ran Lyu & Zhengtian Li & Long Peng & Muhammad Shoaib Khalid, 2016. "A Novel DFIG Damping Control for Power System with High Wind Power Penetration," Energies, MDPI, vol. 9(7), pages 1-15, July.
    2. Kyungsung An & Kyung-Bin Song & Kyeon Hur, 2017. "Incorporating Charging/Discharging Strategy of Electric Vehicles into Security-Constrained Optimal Power Flow to Support High Renewable Penetration," Energies, MDPI, vol. 10(5), pages 1-15, May.
    3. Hyeokjin Son & Gilsoo Jang, 2023. "The Operation Strategy of the MIDC Systems for Optimizing Renewable Energy Integration of Jeju Power System," Energies, MDPI, vol. 16(15), pages 1-20, July.
    4. Moonsung Bae & Hwanik Lee & Byongjun Lee, 2017. "An Approach to Improve the Penetration of Sustainable Energy Using Optimal Transformer Tap Control," Sustainability, MDPI, vol. 9(9), pages 1-15, August.
    5. Ying-Yi Hong, 2016. "Electric Power Systems Research," Energies, MDPI, vol. 9(10), pages 1-4, October.
    6. Shoudao Huang & Yang Zhang & Sijia Hu, 2016. "Stator Current Harmonic Reduction in a Novel Half Quasi-Z-Source Wind Power Generation System," Energies, MDPI, vol. 9(10), pages 1-15, September.
    7. Cheng Lei & Yaning Wu & Yu Huang & Yu Liang & Jinfeng Nie & Muyi Tang & Xuancheng Yi & Yi Luo, 2022. "Research on Maximum Penetration Ratio of Wind Power under the Voltage Stability Margin Constraint," Sustainability, MDPI, vol. 14(12), pages 1-12, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2042-:d:234987. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.