IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i20p8376-d426580.html
   My bibliography  Save this article

The Effects of Restoration Practices on a Small Watershed in China’s Loess Plateau: A Case Study of the Qiaozigou Watershed

Author

Listed:
  • Qi Luo

    (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Lin Zhen

    (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Yunfeng Hu

    (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

Soil erosion and restoration affect the structure and function of ecosystems and society, and have attracted worldwide attention. Changes in runoff and sediment transport after restoration practices in China’s Loess Plateau have been widely studied and many valuable results have been reported. However, this research was mainly conducted in large watersheds, and quantified the effects of restoration practices through the restoration period. In this study, we compared two adjacent watersheds (one restored and the other natural) in a hill and gully region of China’s Loess Plateau to reveal the impacts of restoration practices. We collected annual rainfall, runoff, and sediment transport data from 1988 to 2018, then investigated temporal variation of runoff and sediment transport to examine their relationships with rainfall. We also calculated the retention rate of soil and water under the restoration practices. The restored watershed showed a significantly decreased sediment modulus (the amount per unit area); the natural watershed showed no significant change. In addition, the restored watershed had lower runoff and sediment modulus values than the natural watershed, with greater effectiveness as rainfall increased. Revegetation and terrace construction contributed more to the retention of soil and water (65.6 and 69.7%, respectively) than check dams (<10%). These results improve our understanding of the effects of restoration practices, and provide guidance on ways to preserve soil and water through restoration in a small watershed in the Loess Plateau.

Suggested Citation

  • Qi Luo & Lin Zhen & Yunfeng Hu, 2020. "The Effects of Restoration Practices on a Small Watershed in China’s Loess Plateau: A Case Study of the Qiaozigou Watershed," Sustainability, MDPI, vol. 12(20), pages 1-16, October.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:20:p:8376-:d:426580
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/20/8376/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/20/8376/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Valier Galy & Bernhard Peucker-Ehrenbrink & Timothy Eglinton, 2015. "Global carbon export from the terrestrial biosphere controlled by erosion," Nature, Nature, vol. 521(7551), pages 204-207, May.
    2. Qingfeng Han & Kadambot H. M. Siddique & Fengmin Li, 2018. "Adoption of Conservation Tillage on the Semi-Arid Loess Plateau of Northwest China," Sustainability, MDPI, vol. 10(8), pages 1-16, July.
    3. Eusebio Cano & Carmelo M. Musarella & Ana Cano-Ortiz & José C. Piñar Fuentes & Alfonso Rodríguez Torres & Sara Del Río González & Carlos J. Pinto Gomes & Ricardo Quinto-Canas & Giovanni Spampinato, 2019. "Geobotanical Study of the Microforests of Juniperus oxycedrus subsp. badia in the Central and Southern Iberian Peninsula," Sustainability, MDPI, vol. 11(4), pages 1-31, February.
    4. Xiaoan Chen & Ziwei Liang & Zhanyu Zhang & Long Zhang, 2020. "Effects of Soil and Water Conservation Measures on Runoff and Sediment Yield in Red Soil Slope Farmland under Natural Rainfall," Sustainability, MDPI, vol. 12(8), pages 1-19, April.
    5. Morokong, T. & Blignaut, J.N., 2019. "Benefits and costs analysis of soil erosion control using rock pack structures: The case of Mutale Local Municipality, Limpopo Province, South Africa," Land Use Policy, Elsevier, vol. 83(C), pages 512-522.
    6. Peng, Zhengkai & Wang, Linlin & Xie, Junhong & Li, Lingling & Coulter, Jeffrey A. & Zhang, Renzhi & Luo, Zhuzhu & Cai, Liqun & Carberry, Peter & Whitbread, Anthony, 2020. "Conservation tillage increases yield and precipitation use efficiency of wheat on the semi-arid Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 231(C).
    7. Zhengang Wang & Thomas Hoffmann & Johan Six & Jed O. Kaplan & Gerard Govers & Sebastian Doetterl & Kristof Van Oost, 2017. "Human-induced erosion has offset one-third of carbon emissions from land cover change," Nature Climate Change, Nature, vol. 7(5), pages 345-349, May.
    8. Yunfeng Hu & Rina Dao & Yang Hu, 2019. "Vegetation Change and Driving Factors: Contribution Analysis in the Loess Plateau of China during 2000–2015," Sustainability, MDPI, vol. 11(5), pages 1-16, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José C. Piñar Fuentes & Mauro Raposo & Carlos J. Pinto Gomes & Sara del Río González & Giovanni Spampinato & Eusebio Cano, 2021. "New Contributions to the Ericion umbellatae Alliance in the Central Iberian Peninsula," Sustainability, MDPI, vol. 13(10), pages 1-23, May.
    2. Hao Wang & Yunfeng Hu, 2021. "Simulation of Biocapacity and Spatial-Temporal Evolution Analysis of Loess Plateau in Northern Shaanxi Based on the CA–Markov Model," Sustainability, MDPI, vol. 13(11), pages 1-17, May.
    3. Wang, Linlin & Li, Lingling & Xie, Junhong & Luo, Zhuzhu & Sumera, Anwar & Zechariah, Effah & Fudjoe, Setor Kwami & Palta, Jairo A. & Chen, Yinglong, 2022. "Does plastic mulching reduce water footprint in field crops in China? A meta-analysis," Agricultural Water Management, Elsevier, vol. 260(C).
    4. Mengyao Fan & Dawei Ma & Xianglin Huang & Ru An, 2023. "Adaptability Evaluation of the Spatiotemporal Fusion Model of Sentinel-2 and MODIS Data in a Typical Area of the Three-River Headwater Region," Sustainability, MDPI, vol. 15(11), pages 1-17, May.
    5. Hynek Böhm & Joanna Kurowska-Pysz, 2019. "Can Cross-Border Healthcare Be Sustainable? An Example from the Czech-Austrian Borderland," Sustainability, MDPI, vol. 11(24), pages 1-14, December.
    6. Ana Vulevic & Rui Alexandre Castanho & José Manuel Naranjo Gómez & Luís Loures & José Cabezas & Luis Fernández-Pozo & José Martín Gallardo, 2020. "Accessibility Dynamics and Regional Cross-Border Cooperation (CBC) Perspectives in the Portuguese—Spanish Borderland," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
    7. Hongfei Zhao & Hongming He & Jingjing Wang & Chunyu Bai & Chuangjuan Zhang, 2018. "Vegetation Restoration and Its Environmental Effects on the Loess Plateau," Sustainability, MDPI, vol. 10(12), pages 1-17, December.
    8. Hao Li & Wenjing Zhao & Jing Wang & Xiaozhe Geng & Chunyu Song, 2024. "Evaluating the Accuracy of Contour Ridgeline Positioning for Soil Conservation in the Northeast Black Soil Region of China," Sustainability, MDPI, vol. 16(8), pages 1-15, April.
    9. Hui Zhang & Jinting Guo & Xiaotian Li & Yajie Liu & Tiejuan Wang, 2023. "Spatiotemporal Variation in and Responses of the NDVI to Climate in Western Ordos and Eastern Alxa," Sustainability, MDPI, vol. 15(5), pages 1-12, March.
    10. K. E. Clark & R. F. Stallard & S. F. Murphy & M. A. Scholl & G. González & A. F. Plante & W. H. McDowell, 2022. "Extreme rainstorms drive exceptional organic carbon export from forested humid-tropical rivers in Puerto Rico," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    11. Fang Cui & Hua Wang & Zilin Shen & Yuanyuan Li & Siqiong Li & Xueqi Tian, 2023. "Physicochemical Properties and Environmental Effects of Suspended Sediment Particles in the Largest Freshwater Lake, China," Sustainability, MDPI, vol. 15(8), pages 1-14, April.
    12. Yilun He & Shaowen Zhan & Noshaba Aziz, 2023. "Quantifying the Contribution of Rural Residents’ Participation in the Cultural Tourism Industry to Improve the Soil Erosion Control Effect in Ecologically Fragile Areas: A Case Study in the Shaanxi–Ga," Land, MDPI, vol. 12(4), pages 1-21, March.
    13. Jed O. Kaplan & Kristen M. Krumhardt & Marie-José Gaillard & Shinya Sugita & Anna-Kari Trondman & Ralph Fyfe & Laurent Marquer & Florence Mazier & Anne Birgitte Nielsen, 2017. "Constraining the Deforestation History of Europe: Evaluation of Historical Land Use Scenarios with Pollen-Based Land Cover Reconstructions," Land, MDPI, vol. 6(4), pages 1-20, December.
    14. R. Macdonald & Z. Kuzyk & S. Johannessen, 2015. "It is not just about the ice: a geochemical perspective on the changing Arctic Ocean," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 5(3), pages 288-301, September.
    15. Wang, Linlin & Xie, Junhong & Luo, Zhuzhu & Niu, Yining & Coulter, Jeffrey A. & Zhang, Renzhi & Lingling, Li, 2021. "Forage yield, water use efficiency, and soil fertility response to alfalfa growing age in the semiarid Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 243(C).
    16. Yang, Wenjia & Yan, Naitong & Zhang, Jiali & Yan, Jiakun & Ma, Dengke & Wang, Shiwen & Yin, Lina, 2022. "The applicability of water-permeable plastic film and biodegradable film as alternatives to polyethylene film in crops on the Loess Plateau," Agricultural Water Management, Elsevier, vol. 274(C).
    17. van Zelm, Rosalie & van der Velde, Marijn & Balkovic, Juraj & Čengić, Mirza & Elshout, Pieter M.F. & Koellner, Thomas & Núñez, Montserrat & Obersteiner, Michael & Schmid, Erwin & Huijbregts, Mark , 2018. "Spatially explicit life cycle impact assessment for soil erosion from global crop production," Ecosystem Services, Elsevier, vol. 30(PB), pages 220-227.
    18. Aidin Parsakhoo & Seyed Ataollah Hosseini, 2023. "Effect of bioengineering treatments on reduction of soil erosion from road cut slope and fill slope," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 69(9), pages 367-376.
    19. Qian Li & Jingjing Wang & Xiaoyang Wang & Yubin Wang, 2022. "The Impact of Training on Beef Cattle Farmers’ Installation of Biogas Digesters," Energies, MDPI, vol. 15(9), pages 1-14, April.
    20. Rupinder Saini & Atinderpal Singh & Sanjit K. Deb, 2020. "Effect of Seed Meals on Weed Control and Soil Physical Properties in Direct-Seeded Pumpkin," Sustainability, MDPI, vol. 12(14), pages 1-14, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:20:p:8376-:d:426580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.