IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i15p6133-d391978.html
   My bibliography  Save this article

A Mini-Review of Urban Wastewater Treatment in Greece: History, Development and Future Challenges

Author

Listed:
  • Charikleia Prochaska

    (Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)

  • Anastasios Zouboulis

    (Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)

Abstract

Although Greece has accomplished wastewater infrastructure construction to a large extent, as 91% of the country’s population is already connected to urban wastewater treatment plants (WWTPs), many problems still need to be faced. These include the limited reuse of treated wastewater and of the surplus sludge (biosolids) produced, the relative higher energy consumption in the existing rather aged WWTPs infrastructure, and the proper management of failing or inadequately designed septic tank/soil absorption systems, still in use in several (mostly rural) areas, lacking sewerage systems. Moreover, the wastewater treatment sector should be examined in the general framework of sustainable environmental development; therefore, Greece’s future challenges in this sector ought to be reconsidered. Thus, the review of Greece’s urban wastewater history, even from the ancient times, up to current developments and trends, will be shortly addressed. This study also notes that the remaining challenges should be analyzed in respect to the country’s specific needs (e.g., interaction with the extensive tourism sector), as well as to the European Union’s relevant framework policies and to the respective international technological trends, aiming to consider the WWTPs not only as sites for the treatment/removal of pollutants to prevent environmental pollution, but also as industrial places where energy is efficiently used (or even produced), resources’ content can be potentially recovered and reused (e.g., nutrients, treated water, biosolids), and environmental sustainability is being practiced overall.

Suggested Citation

  • Charikleia Prochaska & Anastasios Zouboulis, 2020. "A Mini-Review of Urban Wastewater Treatment in Greece: History, Development and Future Challenges," Sustainability, MDPI, vol. 12(15), pages 1-16, July.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:15:p:6133-:d:391978
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/15/6133/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/15/6133/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sato, Toshio & Qadir, Manzoor & Yamamoto, Sadahiro & Endo, Tsuneyoshi & Zahoor, Ahmad, 2013. "Global, regional, and country level need for data on wastewater generation, treatment, and use," Agricultural Water Management, Elsevier, vol. 130(C), pages 1-13.
    2. Andreas Ilias & Athanasios Panoras & Andreas Angelakis, 2014. "Wastewater Recycling in Greece: The Case of Thessaloniki," Sustainability, MDPI, vol. 6(5), pages 1-17, May.
    3. Yvan Renou, 2010. "The Governance of Water Services in Developing Countries: An Analysis in Terms of Action Stratification," Journal of Economic Issues, Taylor & Francis Journals, vol. 44(1), pages 113-138.
    4. Georgios Boutsioukis & Apostolos Fasianos & Yannis Petrohilos-Andrianos, 2019. "The spatial distribution of short-term rental listings in Greece: a regional graphic," Regional Studies, Regional Science, Taylor & Francis Journals, vol. 6(1), pages 455-459, January.
    5. Yvan Renou, 2010. "The Governance of Water Services in Developing Countries : An Analysis in Terms of Action Stratification," Post-Print halshs-00468287, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vasileios Alevizos & Ilias Georgousis & Anna-Maria Kapodistria, 2023. "Towards Climate Neutrality: A Comprehensive Overview of Sustainable Operations Management, Optimization, and Wastewater Treatment Strategies," Papers 2308.00808, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas Bolognesi, 2013. "Modernisation of urban water services management in Europe and prospects for sustainability: an analysis in terms of institutional resource regimes," Working Papers halshs-01058059, HAL.
    2. V. I. Blanutsa, 2022. "Geographic Research of the Platform Economy: Existing and Potential Approaches," Regional Research of Russia, Springer, vol. 12(2), pages 133-142, June.
    3. David Kocman & Simon J. Wilson & Helen M. Amos & Kevin H. Telmer & Frits Steenhuisen & Elsie M. Sunderland & Robert P. Mason & Peter Outridge & Milena Horvat, 2017. "Toward an Assessment of the Global Inventory of Present-Day Mercury Releases to Freshwater Environments," IJERPH, MDPI, vol. 14(2), pages 1-16, February.
    4. Zvi Baum & Ruslana Rachel Palatnik & Iddo Kan & Mickey Rapaport-Rom, 2016. "Economic Impacts of Water Scarcity Under Diverse Water Salinities," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(01), pages 1-22, March.
    5. Jemal Fito & Stijn W. H. Hulle, 2021. "Wastewater reclamation and reuse potentials in agriculture: towards environmental sustainability," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 2949-2972, March.
    6. Graça, Manjate, 2018. "Scope effects in contingent valuation: an application to the valuation of irrigation water quality improvements in Infulene Valley, Mozambique," Research Theses 334752, Collaborative Masters Program in Agricultural and Applied Economics.
    7. Manzoor Qadir, 2018. "Policy Note: "Addressing Trade-offs to Promote Safely Managed Wastewater in Developing Countries"," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 4(02), pages 1-10, April.
    8. Jeong, Hanseok & Bhattarai, Rabin & Adamowski, Jan & Yu, David J., 2020. "Insights from socio-hydrological modeling to design sustainable wastewater reuse strategies for agriculture at the watershed scale," Agricultural Water Management, Elsevier, vol. 231(C).
    9. Ami Reznik & Ariel Dinar, 2022. "Local conditions and the economic feasibility of urban wastewater recycling in irrigated agriculture: Lessons from a stochastic regional analysis in California," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 44(4), pages 2115-2130, December.
    10. Alcaide Zaragoza, Carmen & Fernández García, Irene & Martín García, Isabel & Camacho Poyato, Emilio & Rodríguez Díaz, Juan Antonio, 2022. "Spatio-temporal analysis of nitrogen variations in an irrigation distribution network using reclaimed water for irrigating olive trees," Agricultural Water Management, Elsevier, vol. 262(C).
    11. Nikolaos Tzortzakis & Christos Saridakis & Antonios Chrysargyris, 2020. "Treated Wastewater and Fertigation Applied for Greenhouse Tomato Cultivation Grown in Municipal Solid Waste Compost and Soil Mixtures," Sustainability, MDPI, vol. 12(10), pages 1-21, May.
    12. Ricart, Sandra & Rico, Antonio M., 2019. "Assessing technical and social driving factors of water reuse in agriculture: A review on risks, regulation and the yuck factor," Agricultural Water Management, Elsevier, vol. 217(C), pages 426-439.
    13. José Luis Cárdenas-Talero & Jorge Antonio Silva-Leal & Andrea Pérez-Vidal & Patricia Torres-Lozada, 2022. "The Influence of Municipal Wastewater Treatment Technologies on the Biological Stabilization of Sewage Sludge: A Systematic Review," Sustainability, MDPI, vol. 14(10), pages 1-21, May.
    14. Orlando Durán & Paulo Andrés Durán, 2018. "Activity Based Costing for Wastewater Treatment and Reuse under Uncertainty: A Fuzzy Approach," Sustainability, MDPI, vol. 10(7), pages 1-15, June.
    15. Stacy Slobodiuk & Caitlin Niven & Greer Arthur & Siddhartha Thakur & Ayse Ercumen, 2021. "Does Irrigation with Treated and Untreated Wastewater Increase Antimicrobial Resistance in Soil and Water: A Systematic Review," IJERPH, MDPI, vol. 18(21), pages 1-19, October.
    16. Never, Babette, 2016. "Wastewater systems and energy saving in urban India: governing the Water-Energy-Food Nexus series," IDOS Discussion Papers 12/2016, German Institute of Development and Sustainability (IDOS).
    17. Manzoor Qadir & Pay Drechsel & Blanca Jiménez Cisneros & Younggy Kim & Amit Pramanik & Praem Mehta & Oluwabusola Olaniyan, 2020. "Global and regional potential of wastewater as a water, nutrient and energy source," Natural Resources Forum, Blackwell Publishing, vol. 44(1), pages 40-51, February.
    18. Morteza Feizi & Mohsen Jalali & Gianacrlo Renella, 2019. "Assessment of nutrient and heavy metal content and speciation in sewage sludge from different locations in Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 95(3), pages 657-675, February.
    19. Jessica A. Rubin & Josef H. Görres, 2020. "Potential for Mycorrhizae-Assisted Phytoremediation of Phosphorus for Improved Water Quality," IJERPH, MDPI, vol. 18(1), pages 1-23, December.
    20. Stepping, Katharina, 2016. "Urban sewage in Brazil: drivers of and obstacles to wastewater treatment and reuse. Governing the Water-Energy-Food Nexus Series," IDOS Discussion Papers 26/2016, German Institute of Development and Sustainability (IDOS).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:15:p:6133-:d:391978. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.