IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i15p5986-d389513.html
   My bibliography  Save this article

Design and Performance Analysis of a Lightweight Flexible nZEB

Author

Listed:
  • Graziano Salvalai

    (Department of Architecture, Built Environment and Construction Engineering, Politecnico di Milano, 20133 Milan, Italy)

  • Marta Maria Sesana

    (RE3_Lab, Politecnico di Milano Polo Territoriale di Lecco, 23900 Lecco, Italy)

  • Diletta Brutti

    (Department of Architecture, Built Environment and Construction Engineering, Politecnico di Milano, 20133 Milan, Italy)

  • Marco Imperadori

    (Department of Architecture, Built Environment and Construction Engineering, Politecnico di Milano, 20133 Milan, Italy)

Abstract

Starting from an experimental activity, the paper describes research analysis that has been conducted on a real case construction with the aim to design its adaptation as a nearly zero energy building in three possible alternative scenarios: (i) a lab for students’ activities in the Lecco University Campus of Politecnico di Milano; (ii) an Alpine shelter for the implementation of a sustainable mountain tourism in Zermatt; (iii) an emergency shelter for poor communities in Burkina Faso. The use of an easily disassembled and lightweight steel structure coupled with dry-layered technologies allows a tailor-made envelope design, ensuring high thermal comfort, very low energy use, and limited construction times. The three case studies have been designed starting from the same architectural/structural concept. A detailed analysis, by means of finite element method and dynamic building thermal simulations, has been performed to predict the overall performances of each case study. The results show: (i) high replicability of the concept; (ii) high customization of the envelope technologies; (iii) high energy efficiency; and (iv) high thermal comfort of the architecture. The useful energy requirement in all the three analyzed scenarios is minimized and equal to 14.13, 23.88, and 41.83 kWh/m 2 year, respectively, for the students’ lab, the Alpine shelter and the emergency shelter. According to this study the energy needs can be covered by renewable energy produced on site, making the architectural concept an interesting modular lightweight solution for a nearly zero energy building with high potential for replicability.

Suggested Citation

  • Graziano Salvalai & Marta Maria Sesana & Diletta Brutti & Marco Imperadori, 2020. "Design and Performance Analysis of a Lightweight Flexible nZEB," Sustainability, MDPI, vol. 12(15), pages 1-27, July.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:15:p:5986-:d:389513
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/15/5986/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/15/5986/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Enrica De Cian & Ilkka Keppo & Johannes Bollen & Samuel Carrara & Hannah Förster & Michael Hübler & Amit Kanudia & Sergey Paltsev & Ronald D. Sands & Katja Schumacher, 2013. "European-Led Climate Policy Versus Global Mitigation Action: Implications On Trade, Technology, And Energy," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 4(supp0), pages 1-28.
    2. Salvalai, Graziano & Masera, Gabriele & Sesana, Marta Maria, 2015. "Italian local codes for energy efficiency of buildings: Theoretical definition and experimental application to a residential case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1245-1259.
    3. Marta Maria Sesana & Mathieu Rivallain & Graziano Salvalai, 2020. "Overview of the Available Knowledge for the Data Model Definition of a Building Renovation Passport for Non-Residential Buildings: The ALDREN Project Experience," Sustainability, MDPI, vol. 12(2), pages 1-17, January.
    4. Dixit, Manish K., 2017. "Life cycle embodied energy analysis of residential buildings: A review of literature to investigate embodied energy parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 390-413.
    5. Cabeza, Luisa F. & Rincón, Lídia & Vilariño, Virginia & Pérez, Gabriel & Castell, Albert, 2014. "Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 394-416.
    6. Marielle Ferreira Silva & Laddu Bhagya Jayasinghe & Daniele Waldmann & Florian Hertweck, 2020. "Recyclable Architecture: Prefabricated and Recyclable Typologies," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. H.-Ping Tserng & Cheng-Mo Chou & Yun-Tsui Chang, 2021. "The Key Strategies to Implement Circular Economy in Building Projects—A Case Study of Taiwan," Sustainability, MDPI, vol. 13(2), pages 1-16, January.
    2. Albina Scioti & Mariella De Fino & Silvia Martiradonna & Fabio Fatiguso, 2022. "Construction Solutions and Materials to Optimize the Energy Performances of EPS-RC Precast Bearing Walls," Sustainability, MDPI, vol. 14(6), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luis M. López-Ochoa & Jesús Las-Heras-Casas & Luis M. López-González & César García-Lozano, 2020. "Energy Renovation of Residential Buildings in Cold Mediterranean Zones Using Optimized Thermal Envelope Insulation Thicknesses: The Case of Spain," Sustainability, MDPI, vol. 12(6), pages 1-34, March.
    2. Rui Jiang & Rongrong Li, 2017. "Decomposition and Decoupling Analysis of Life-Cycle Carbon Emission in China’s Building Sector," Sustainability, MDPI, vol. 9(5), pages 1-18, May.
    3. Karel Struhala & Milan Ostrý, 2021. "Life-Cycle Assessment of a Rural Terraced House: A Struggle with Sustainability of Building Renovations," Energies, MDPI, vol. 14(9), pages 1-18, April.
    4. Francesco Asdrubali & Gianluca Grazieschi & Marta Roncone & Francesca Thiebat & Corrado Carbonaro, 2023. "Sustainability of Building Materials: Embodied Energy and Embodied Carbon of Masonry," Energies, MDPI, vol. 16(4), pages 1-28, February.
    5. Shad, Rouzbeh & Khorrami, Mohammad & Ghaemi, Marjan, 2017. "Developing an Iranian green building assessment tool using decision making methods and geographical information system: Case study in Mashhad city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 324-340.
    6. Hossein Omrany & Veronica Soebarto & Ehsan Sharifi & Ali Soltani, 2020. "Application of Life Cycle Energy Assessment in Residential Buildings: A Critical Review of Recent Trends," Sustainability, MDPI, vol. 12(1), pages 1-30, January.
    7. Li, Clyde Zhengdao & Lai, Xulu & Xiao, Bing & Tam, Vivian W.Y. & Guo, Shan & Zhao, Yiyu, 2020. "A holistic review on life cycle energy of buildings: An analysis from 2009 to 2019," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    8. Venkatraj, V. & Dixit, M.K., 2021. "Life cycle embodied energy analysis of higher education buildings: A comparison between different LCI methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    9. Burek, Jasmina & Nutter, Darin W., 2019. "A life cycle assessment-based multi-objective optimization of the purchased, solar, and wind energy for the grocery, perishables, and general merchandise multi-facility distribution center network," Applied Energy, Elsevier, vol. 235(C), pages 1427-1446.
    10. López-Ochoa, Luis M. & Las-Heras-Casas, Jesús & López-González, Luis M. & Olasolo-Alonso, Pablo, 2019. "Towards nearly zero-energy buildings in Mediterranean countries: Energy Performance of Buildings Directive evolution and the energy rehabilitation challenge in the Spanish residential sector," Energy, Elsevier, vol. 176(C), pages 335-352.
    11. Sierra-Pérez, Jorge & Rodríguez-Soria, Beatriz & Boschmonart-Rives, Jesús & Gabarrell, Xavier, 2018. "Integrated life cycle assessment and thermodynamic simulation of a public building’s envelope renovation: Conventional vs. Passivhaus proposal," Applied Energy, Elsevier, vol. 212(C), pages 1510-1521.
    12. Sungwoo Lee & Sungho Tae & Seungjun Roh & Taehyung Kim, 2015. "Green Template for Life Cycle Assessment of Buildings Based on Building Information Modeling: Focus on Embodied Environmental Impact," Sustainability, MDPI, vol. 7(12), pages 1-15, December.
    13. Patricia González-Vallejo & Radu Muntean & Jaime Solís-Guzmán & Madelyn Marrero, 2020. "Carbon Footprint of Dwelling Construction in Romania and Spain. A Comparative Analysis with the OERCO2 Tool," Sustainability, MDPI, vol. 12(17), pages 1-22, August.
    14. Roux, Charlotte & Schalbart, Patrick & Assoumou, Edi & Peuportier, Bruno, 2016. "Integrating climate change and energy mix scenarios in LCA of buildings and districts," Applied Energy, Elsevier, vol. 184(C), pages 619-629.
    15. Cui, Li & Chan, Hing Kai & Zhou, Yizhuo & Dai, Jing & Lim, Jia Jia, 2019. "Exploring critical factors of green business failure based on Grey-Decision Making Trial and Evaluation Laboratory (DEMATEL)," Journal of Business Research, Elsevier, vol. 98(C), pages 450-461.
    16. Antonello Monsù Scolaro & Stefania De Medici, 2021. "Downcycling and Upcycling in Rehabilitation and Adaptive Reuse of Pre-Existing Buildings: Re-Designing Technological Performances in an Environmental Perspective," Energies, MDPI, vol. 14(21), pages 1-23, October.
    17. Baglivo, Cristina & Congedo, Paolo Maria & D'Agostino, Delia & Zacà, Ilaria, 2015. "Cost-optimal analysis and technical comparison between standard and high efficient mono-residential buildings in a warm climate," Energy, Elsevier, vol. 83(C), pages 560-575.
    18. Maria Anna Cusenza & Teresa Maria Gulotta & Marina Mistretta & Maurizio Cellura, 2021. "Life Cycle Energy and Environmental Assessment of the Thermal Insulation Improvement in Residential Buildings," Energies, MDPI, vol. 14(12), pages 1-21, June.
    19. Sultan Çetin & Catherine De Wolf & Nancy Bocken, 2021. "Circular Digital Built Environment: An Emerging Framework," Sustainability, MDPI, vol. 13(11), pages 1-34, June.
    20. Jin-Young Park & Byung-Soo Kim & Dong-Eun Lee, 2021. "Environmental and Cost Impact Assessment of Pavement Materials Using IBEES Method," Sustainability, MDPI, vol. 13(4), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:15:p:5986-:d:389513. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.