IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i14p5844-d387190.html
   My bibliography  Save this article

Collaboration Model for Service Clustering in Last-Mile Delivery

Author

Listed:
  • Seung Yoon Ko

    (Department of Industrial Engineering, Seoul National University, Gwanak-ro, Gwanak -gu, Seoul 08826, Korea)

  • Ratna Permata Sari

    (Department of Industrial and Management Engineering, Kyungsung University, 309 Suyeong-ro, Nam-gu, Busan 48434, Korea)

  • Muzaffar Makhmudov

    (Department of Industrial and Management Engineering, Kyungsung University, 309 Suyeong-ro, Nam-gu, Busan 48434, Korea)

  • Chang Seong Ko

    (Department of Industrial and Management Engineering, Kyungsung University, 309 Suyeong-ro, Nam-gu, Busan 48434, Korea)

Abstract

As e-commerce is rapidly expanding, efficient and competitive product delivery system to the final customer is highly required. Recently, the emergence of a smart platform is leading the transformation of distribution, performance, and quality in express delivery services, especially in the last-mile delivery. The business to consumer (B2C) through smart platforms such as Amazon in America and Coupang in Korea utilizes the differentiated delivery rates to increase the market share. In contrast, the small and medium-sized express delivery companies with low market share are trying hard to expand their market share. In order to fulfill all customer needs, collaboration is needed. This study aims to construct a collaboration model to maximize the net profit by considering the market density of each company. A Baduk board game is used to derive the last-mile delivery time function of market density. All companies in collaboration have to specialize the delivery items into certain service clustering types, which consist of regular, big sized/weighted, and cold items. The multi-objective programming model is developed based on max-sum and max-min criteria. The Shapley value and nucleolus approaches are applied to find the profit allocation. Finally, the applicability of the proposed collaboration model is shown through a numerical example.

Suggested Citation

  • Seung Yoon Ko & Ratna Permata Sari & Muzaffar Makhmudov & Chang Seong Ko, 2020. "Collaboration Model for Service Clustering in Last-Mile Delivery," Sustainability, MDPI, vol. 12(14), pages 1-18, July.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:14:p:5844-:d:387190
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/14/5844/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/14/5844/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ozbaygin, Gizem & Ekin Karasan, Oya & Savelsbergh, Martin & Yaman, Hande, 2017. "A branch-and-price algorithm for the vehicle routing problem with roaming delivery locations," Transportation Research Part B: Methodological, Elsevier, vol. 100(C), pages 115-137.
    2. Timmer, Judith & Chessa, Michela & Boucherie, Richard J., 2013. "Cooperation and game-theoretic cost allocation in stochastic inventory models with continuous review," European Journal of Operational Research, Elsevier, vol. 231(3), pages 567-576.
    3. Yong Wang & Shouguo Peng & Kevin Assogba & Yong Liu & Haizhong Wang & Maozeng Xu & Yinhai Wang, 2018. "Implementation of Cooperation for Recycling Vehicle Routing Optimization in Two-Echelon Reverse Logistics Networks," Sustainability, MDPI, vol. 10(5), pages 1-27, April.
    4. Frisk, M. & Göthe-Lundgren, M. & Jörnsten, K. & Rönnqvist, M., 2010. "Cost allocation in collaborative forest transportation," European Journal of Operational Research, Elsevier, vol. 205(2), pages 448-458, September.
    5. Todeva, Emanuela, 2007. "Strategic Alliances," MPRA Paper 52845, University Library of Munich, Germany.
    6. Minyoung Yea & Seokhyun Chung & Taesu Cheong & Daeki Kim, 2018. "The Sharing of Benefits from a Logistics Alliance Based on a Hub-Spoke Network: A Cooperative Game Theoretic Approach," Sustainability, MDPI, vol. 10(6), pages 1-16, June.
    7. Feng, Xuehao & Moon, Ilkyeong & Ryu, Kwangyeol, 2017. "Warehouse capacity sharing via transshipment for an integrated two-echelon supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 104(C), pages 17-35.
    8. Lozano, S. & Moreno, P. & Adenso-Díaz, B. & Algaba, E., 2013. "Cooperative game theory approach to allocating benefits of horizontal cooperation," European Journal of Operational Research, Elsevier, vol. 229(2), pages 444-452.
    9. Agatz, Niels A.H. & Fleischmann, Moritz & van Nunen, Jo A.E.E., 2008. "E-fulfillment and multi-channel distribution - A review," European Journal of Operational Research, Elsevier, vol. 187(2), pages 339-356, June.
    10. Seung Yoon Ko & Sung Won Cho & Chulung Lee, 2018. "Pricing and Collaboration in Last Mile Delivery Services," Sustainability, MDPI, vol. 10(12), pages 1-20, December.
    11. Ki Ho Chung & Jae Jeung Rho & Chang Seong Ko, 2009. "A strategic alliance model with a regional monopoly of service centres in express courier services," International Journal of Services and Operations Management, Inderscience Enterprises Ltd, vol. 5(6), pages 774-786.
    12. Gérard P. Cachon & Martin A. Lariviere, 1999. "Capacity Choice and Allocation: Strategic Behavior and Supply Chain Performance," Management Science, INFORMS, vol. 45(8), pages 1091-1108, August.
    13. Büyüközkan, Gülçin & Feyzioglu, Orhan & Nebol, Erdal, 2008. "Selection of the strategic alliance partner in logistics value chain," International Journal of Production Economics, Elsevier, vol. 113(1), pages 148-158, May.
    14. Lu, Wenrong & McFarlane, Duncan & Giannikas, Vaggelis & Zhang, Quan, 2016. "An algorithm for dynamic order-picking in warehouse operations," European Journal of Operational Research, Elsevier, vol. 248(1), pages 107-122.
    15. Wooseok Do & Hyeongjun Park & Koohong Chung & Dongjoo Park, 2019. "An Effects Analysis of Logistics Collaboration: The Case of Pharmaceutical Supplies in Seoul," Sustainability, MDPI, vol. 11(8), pages 1-16, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomáš Settey & Jozef Gnap & Dominika Beňová & Michal Pavličko & Oľga Blažeková, 2021. "The Growth of E-Commerce Due to COVID-19 and the Need for Urban Logistics Centers Using Electric Vehicles: Bratislava Case Study," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    2. Filip Škultéty & Dominika Beňová & Jozef Gnap, 2021. "City Logistics as an Imperative Smart City Mechanism: Scrutiny of Clustered EU27 Capitals," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
    3. Feng Li & Zhi-Ping Fan & Bing-Bing Cao & Hai-Mei Lv, 2020. "The Logistics Service Mode Selection for Last Mile Delivery Considering Delivery Service Cost and Capability," Sustainability, MDPI, vol. 12(19), pages 1-17, September.
    4. Feng Li & Zhi-Ping Fan & Bing-Bing Cao & Xin Li, 2020. "Logistics Service Mode Selection for Last Mile Delivery: An Analysis Method Considering Customer Utility and Delivery Service Cost," Sustainability, MDPI, vol. 13(1), pages 1-22, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nassim Mrabti & Nadia Hamani & Laurent Delahoche, 2022. "A Comprehensive Literature Review on Sustainable Horizontal Collaboration," Sustainability, MDPI, vol. 14(18), pages 1-38, September.
    2. Yong Wang & Yingying Yuan & Xiangyang Guan & Haizhong Wang & Yong Liu & Maozeng Xu, 2019. "Collaborative Mechanism for Pickup and Delivery Problems with Heterogeneous Vehicles under Time Windows," Sustainability, MDPI, vol. 11(12), pages 1-30, June.
    3. Mario Guajardo & Kurt Jörnsten & Mikael Rönnqvist, 2016. "Constructive and blocking power in collaborative transportation," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(1), pages 25-50, January.
    4. Padilla Tinoco, Silvia Valeria & Creemers, Stefan & Boute, Robert N., 2017. "Collaborative shipping under different cost-sharing agreements," European Journal of Operational Research, Elsevier, vol. 263(3), pages 827-837.
    5. Bhoopalam, Anirudh Kishore & Agatz, Niels & Zuidwijk, Rob, 2018. "Planning of truck platoons: A literature review and directions for future research," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 212-228.
    6. Minyoung Yea & Seokhyun Chung & Taesu Cheong & Daeki Kim, 2018. "The Sharing of Benefits from a Logistics Alliance Based on a Hub-Spoke Network: A Cooperative Game Theoretic Approach," Sustainability, MDPI, vol. 10(6), pages 1-16, June.
    7. Kimms, A. & Kozeletskyi, I., 2016. "Core-based cost allocation in the cooperative traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 248(3), pages 910-916.
    8. Lotte Verdonck & Katrien Ramaekers & Benoît Depaire & An Caris & Gerrit K. Janssens, 2019. "Analysing the Effect of Partner Characteristics on the Performance of Horizontal Carrier Collaborations," Networks and Spatial Economics, Springer, vol. 19(2), pages 583-609, June.
    9. Guajardo, Mario & Rönnqvist, Mikael & Flisberg, Patrik & Frisk, Mikael, 2018. "Collaborative transportation with overlapping coalitions," European Journal of Operational Research, Elsevier, vol. 271(1), pages 238-249.
    10. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," European Journal of Operational Research, Elsevier, vol. 277(2), pages 396-411.
    11. Defryn, Christof & Sörensen, Kenneth & Dullaert, Wout, 2019. "Integrating partner objectives in horizontal logistics optimisation models," Omega, Elsevier, vol. 82(C), pages 1-12.
    12. Guajardo, Mario & Jörnsten, Kurt, 2015. "Common mistakes in computing the nucleolus," European Journal of Operational Research, Elsevier, vol. 241(3), pages 931-935.
    13. Lunday, Brian J. & Robbins, Matthew J., 2019. "Collaboratively-developed vaccine pricing and stable profit sharing mechanisms," Omega, Elsevier, vol. 84(C), pages 102-113.
    14. Cleophas, Catherine & Cottrill, Caitlin & Ehmke, Jan Fabian & Tierney, Kevin, 2019. "Collaborative urban transportation: Recent advances in theory and practice," European Journal of Operational Research, Elsevier, vol. 273(3), pages 801-816.
    15. Mehmet Onur Olgun, 2022. "Collaborative airline revenue sharing game with grey demand data," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(3), pages 861-882, September.
    16. Alix Vargas & Shushma Patel & Dilip Patel, 2018. "Towards a Business Model Framework to Increase Collaboration in the Freight Industry," Logistics, MDPI, vol. 2(4), pages 1-32, October.
    17. Zhang, Xuemei & Zhou, Gengui & Cao, Jian & Wu, Anqi, 2020. "Evolving strategies of e-commerce and express delivery enterprises with public supervision," Research in Transportation Economics, Elsevier, vol. 80(C).
    18. Guajardo, Mario & Rönnqvist, Mikael, 2015. "Operations research models for coalition structure in collaborative logistics," European Journal of Operational Research, Elsevier, vol. 240(1), pages 147-159.
    19. Cruijssen, Frans, 2012. "Co³ Position Paper: Framework For Collaboration," Other publications TiSEM 9f66d856-f0ff-455f-a334-2, Tilburg University, School of Economics and Management.
    20. Eren Akyol, Derya & De Koster, René B.M., 2018. "Determining time windows in urban freight transport: A city cooperative approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 34-50.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:14:p:5844-:d:387190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.