IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i12p5151-d375672.html
   My bibliography  Save this article

Scheduling Charging of Electric Vehicles in a Secured Manner by Emphasizing Cost Minimization Using Blockchain Technology and IPFS

Author

Listed:
  • Muhammad Umar Javed

    (Department of Computer Science, COMSATS University Islamabad, Islamabad 44000, Pakistan)

  • Nadeem Javaid

    (Department of Computer Science, COMSATS University Islamabad, Islamabad 44000, Pakistan)

  • Abdulaziz Aldegheishem

    (Traffic Safety Technologies Chair, Urban Planning Department, College of Architecture and Planning, King Saud University, Riyadh 11574, Saudi Arabia)

  • Nabil Alrajeh

    (Biomedical Technology Department, College of Applied Medical Sciences, King Saud University, Riyadh 11633, Saudi Arabia)

  • Muhammad Tahir

    (College of Computer Science and Engineering (CCSE), University of Jeddah, Jeddah 21959, Saudi Arabia)

  • Muhammad Ramzan

    (Department of Computer Science and IT, University of Sargodha, Sargodha 40100, Pakistan
    School of Systems and Technology, University of Management and Technology, Lahore 54000, Pakistan)

Abstract

In this work, Electric Vehicles (EVs) are charged using a new and improved charging mechanism called the Mobile-Vehicle-to-Vehicle (M2V) charging strategy. It is further compared with conventional Vehicle-to-Vehicle (V2V) and Grid-to-Vehicle (G2V) charging strategies. In the proposed work, the charging of vehicles is done in a Peer-to-Peer (P2P) manner; the vehicles are charged using Charging Stations (CSs) or Mobile Vehicles (MVs) in the absence of a central entity. CSs are fixed entities situated at certain locations and act as charge suppliers, whereas MVs act as prosumers, which have the capability of charging themselves and also other vehicles. In the proposed system, blockchain technology is used to tackle the issues related with existing systems, such as privacy, security, lack of trust, etc., and also to promote transparency, data immutability, and a tamper-proof nature. Moreover, to store the data related to traffic, roads, and weather conditions, a centralized entity, i.e., Transport System Information Unit (TSIU), is used. It helps in reducing the road congestion and avoids roadside accidents. In the TSIU, an Inter-Planetary File System (IPFS) is used to store the data in a secured manner after removing the data’s redundancy through data filtration. Furthermore, four different types of costs are calculated mathematically, which ultimately contribute towards calculating the total charging cost. The shortest distance between a vehicle and the charging entities is calculated using the Great-Circle Distance formula. Moving on, both the time taken to traverse this shortest distance and the time to charge the vehicles are calculated using real-time data of four EVs. Location privacy is also proposed in this work to provide privacy to vehicle users. The power flow and the related energy losses for the above-mentioned charging strategies are also discussed in this work. An incentive provisioning mechanism is also proposed on the basis of timely delivery of credible messages, which further promotes users’ participation. In the end, simulations are performed and results are obtained that prove the efficiency of the proposed work, as compared to conventional techniques, in minimizing the EVs’ charging cost, time, and distance.

Suggested Citation

  • Muhammad Umar Javed & Nadeem Javaid & Abdulaziz Aldegheishem & Nabil Alrajeh & Muhammad Tahir & Muhammad Ramzan, 2020. "Scheduling Charging of Electric Vehicles in a Secured Manner by Emphasizing Cost Minimization Using Blockchain Technology and IPFS," Sustainability, MDPI, vol. 12(12), pages 1-37, June.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:12:p:5151-:d:375672
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/12/5151/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/12/5151/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Apostolaki-Iosifidou, Elpiniki & Codani, Paul & Kempton, Willett, 2017. "Measurement of power loss during electric vehicle charging and discharging," Energy, Elsevier, vol. 127(C), pages 730-742.
    2. Muqaddas Naz & Fahad A. Al-zahrani & Rabiya Khalid & Nadeem Javaid & Ali Mustafa Qamar & Muhammad Khalil Afzal & Muhammad Shafiq, 2019. "A Secure Data Sharing Platform Using Blockchain and Interplanetary File System," Sustainability, MDPI, vol. 11(24), pages 1-24, December.
    3. Vallés, Mercedes & Bello, Antonio & Reneses, Javier & Frías, Pablo, 2018. "Probabilistic characterization of electricity consumer responsiveness to economic incentives," Applied Energy, Elsevier, vol. 216(C), pages 296-310.
    4. Eissa, M.M., 2018. "First time real time incentive demand response program in smart grid with “i-Energy” management system with different resources," Applied Energy, Elsevier, vol. 212(C), pages 607-621.
    5. Zhang, Tianyang & Pota, Himanshu & Chu, Chi-Cheng & Gadh, Rajit, 2018. "Real-time renewable energy incentive system for electric vehicles using prioritization and cryptocurrency," Applied Energy, Elsevier, vol. 226(C), pages 582-594.
    6. Adamu Sani Yahaya & Nadeem Javaid & Fahad A. Alzahrani & Amjad Rehman & Ibrar Ullah & Affaf Shahid & Muhammad Shafiq, 2020. "Blockchain Based Sustainable Local Energy Trading Considering Home Energy Management and Demurrage Mechanism," Sustainability, MDPI, vol. 12(8), pages 1-28, April.
    7. Luo, Yugong & Zhu, Tao & Wan, Shuang & Zhang, Shuwei & Li, Keqiang, 2016. "Optimal charging scheduling for large-scale EV (electric vehicle) deployment based on the interaction of the smart-grid and intelligent-transport systems," Energy, Elsevier, vol. 97(C), pages 359-368.
    8. Emilio Porcu & Moreno Bevilacqua & Marc G. Genton, 2016. "Spatio-Temporal Covariance and Cross-Covariance Functions of the Great Circle Distance on a Sphere," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 888-898, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Isabel C. Gil-García & Mª Socorro García-Cascales & Habib Dagher & Angel Molina-García, 2021. "Electric Vehicle and Renewable Energy Sources: Motor Fusion in the Energy Transition from a Multi-Indicator Perspective," Sustainability, MDPI, vol. 13(6), pages 1-19, March.
    2. Marija Jović & Edvard Tijan & Dražen Žgaljić & Saša Aksentijević, 2020. "Improving Maritime Transport Sustainability Using Blockchain-Based Information Exchange," Sustainability, MDPI, vol. 12(21), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Kaile & Cheng, Lexin & Wen, Lulu & Lu, Xinhui & Ding, Tao, 2020. "A coordinated charging scheduling method for electric vehicles considering different charging demands," Energy, Elsevier, vol. 213(C).
    2. Kong, Xiangyu & Kong, Deqian & Yao, Jingtao & Bai, Linquan & Xiao, Jie, 2020. "Online pricing of demand response based on long short-term memory and reinforcement learning," Applied Energy, Elsevier, vol. 271(C).
    3. Zhang, Tianyang & Pota, Himanshu & Chu, Chi-Cheng & Gadh, Rajit, 2018. "Real-time renewable energy incentive system for electric vehicles using prioritization and cryptocurrency," Applied Energy, Elsevier, vol. 226(C), pages 582-594.
    4. Ghotge, Rishabh & van Wijk, Ad & Lukszo, Zofia, 2021. "Off-grid solar charging of electric vehicles at long-term parking locations," Energy, Elsevier, vol. 227(C).
    5. Shafqat Jawad & Junyong Liu, 2020. "Electrical Vehicle Charging Services Planning and Operation with Interdependent Power Networks and Transportation Networks: A Review of the Current Scenario and Future Trends," Energies, MDPI, vol. 13(13), pages 1-24, July.
    6. Li, Shuangqi & Zhao, Pengfei & Gu, Chenghong & Huo, Da & Zeng, Xianwu & Pei, Xiaoze & Cheng, Shuang & Li, Jianwei, 2022. "Online battery-protective vehicle to grid behavior management," Energy, Elsevier, vol. 243(C).
    7. Shi You & Junjie Hu & Charalampos Ziras, 2016. "An Overview of Modeling Approaches Applied to Aggregation-Based Fleet Management and Integration of Plug-in Electric Vehicles †," Energies, MDPI, vol. 9(11), pages 1-18, November.
    8. Yan Liu & Chao Shang, 2022. "Application of Blockchain Technology in Agricultural Water Rights Trade Management," Sustainability, MDPI, vol. 14(12), pages 1-10, June.
    9. Huang, Yeran & Yang, Lixing & Tang, Tao & Gao, Ziyou & Cao, Fang, 2017. "Joint train scheduling optimization with service quality and energy efficiency in urban rail transit networks," Energy, Elsevier, vol. 138(C), pages 1124-1147.
    10. Tsao, Yu-Chung & Thanh, Vo-Van, 2021. "Toward sustainable microgrids with blockchain technology-based peer-to-peer energy trading mechanism: A fuzzy meta-heuristic approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    11. Manpreet Kaur & Shikha Gupta & Deepak Kumar & Chaman Verma & Bogdan-Constantin Neagu & Maria Simona Raboaca, 2022. "Delegated Proof of Accessibility (DPoAC): A Novel Consensus Protocol for Blockchain Systems," Mathematics, MDPI, vol. 10(13), pages 1-17, July.
    12. Lixing Chen & Xueliang Huang & Hong Zhang, 2020. "Modeling the Charging Behaviors for Electric Vehicles Based on Ternary Symmetric Kernel Density Estimation," Energies, MDPI, vol. 13(7), pages 1-17, March.
    13. Gleb V. Savin, 2021. "The smart city transport and logistics system: Theory, methodology and practice," Upravlenets, Ural State University of Economics, vol. 12(6), pages 67-86, October.
    14. Alexandre F. M. Correia & Pedro Moura & Aníbal T. de Almeida, 2022. "Technical and Economic Assessment of Battery Storage and Vehicle-to-Grid Systems in Building Microgrids," Energies, MDPI, vol. 15(23), pages 1-23, November.
    15. Alessia Caponera, 2021. "SPHARMA approximations for stationary functional time series on the sphere," Statistical Inference for Stochastic Processes, Springer, vol. 24(3), pages 609-634, October.
    16. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
    17. Sun, Bo & Li, Mingzhe & Wang, Fan & Xie, Jingdong, 2023. "An incentive mechanism to promote residential renewable energy consumption in China's electricity retail market: A two-level Stackelberg game approach," Energy, Elsevier, vol. 269(C).
    18. Mousa Mohammed Khubrani & Shadab Alam, 2023. "Blockchain-Based Microgrid for Safe and Reliable Power Generation and Distribution: A Case Study of Saudi Arabia," Energies, MDPI, vol. 16(16), pages 1-34, August.
    19. Lu, Qing & Lü, Shuaikang & Leng, Yajun, 2019. "A Nash-Stackelberg game approach in regional energy market considering users’ integrated demand response," Energy, Elsevier, vol. 175(C), pages 456-470.
    20. Rémy Cleenwerck & Hakim Azaioud & Majid Vafaeipour & Thierry Coosemans & Jan Desmet, 2023. "Impact Assessment of Electric Vehicle Charging in an AC and DC Microgrid: A Comparative Study," Energies, MDPI, vol. 16(7), pages 1-17, April.

    More about this item

    Keywords

    blockchain; M2V; IPFS; charging scheduling; Great-Circle Distance;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:12:p:5151-:d:375672. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.