IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i12p5099-d375103.html
   My bibliography  Save this article

Information Integration in a Smart City System—A Case Study on Air Pollution Removal by Green Infrastructure through a Vehicle Smart Routing System

Author

Listed:
  • Jules Muvuna

    (School of Engineering and Built Environment, Glasgow Caledonian University, Cowcaddens Rd, Glasgow G4 0BA, UK)

  • Tuleen Boutaleb

    (School of Engineering and Built Environment, Glasgow Caledonian University, Cowcaddens Rd, Glasgow G4 0BA, UK)

  • Slobodan B. Mickovski

    (School of Engineering and Built Environment, Glasgow Caledonian University, Cowcaddens Rd, Glasgow G4 0BA, UK)

  • Keith Baker

    (School of Engineering and Built Environment, Glasgow Caledonian University, Cowcaddens Rd, Glasgow G4 0BA, UK)

  • Ghoreyshi Seyed Mohammad

    (Mathematical Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK)

  • Mario Cools

    (Urban and Environmental Engineering Department, University of Liège, Local Environment Management & Analysis (LEMA), Allée de la Découverte9, Quartier Polytech 1, BE-4000 Liège, Belgium)

  • Wissal Selmi

    (Urban and Environmental Engineering Department, University of Liège, Local Environment Management & Analysis (LEMA), Allée de la Découverte9, Quartier Polytech 1, BE-4000 Liège, Belgium)

Abstract

Over the past few years, the ‘‘smart city’’ concept has emerged as a new trend to answer challenging issues related to urban development. Transformation of a city system into a smart system is meant to improve the quality of life for its people and their way of living, its environment, economy, transport, and governance. Due to benefits associated with the concept of the smart city and associated implementation challenges, traditional city systems have been undergoing transformation into smart city systems. However, observed approaches of transformation presented disconnected and fragmented city systems that usually hamper the interaction of city subsystems with the efficient and environmentally friendly urban environment. This work emphasizes the systematic view of a city system and proposes a novel method of smart city system integration. The results of our study show that in a smart city environment, where ecosystem services are valorised, air pollution emitted by vehicles can be removed by taking into consideration information related to air pollution reduction. A case study is presented to demonstrate that, with an integrated system, information outputs on travel decisions are different and more valuable. The case study explores the operability of the system, its limitations, and potential future improvements.

Suggested Citation

  • Jules Muvuna & Tuleen Boutaleb & Slobodan B. Mickovski & Keith Baker & Ghoreyshi Seyed Mohammad & Mario Cools & Wissal Selmi, 2020. "Information Integration in a Smart City System—A Case Study on Air Pollution Removal by Green Infrastructure through a Vehicle Smart Routing System," Sustainability, MDPI, vol. 12(12), pages 1-14, June.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:12:p:5099-:d:375103
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/12/5099/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/12/5099/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Appio, Francesco Paolo & Lima, Marcos & Paroutis, Sotirios, 2019. "Understanding Smart Cities: Innovation ecosystems, technological advancements, and societal challenges," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 1-14.
    2. Clara Benevolo & Renata Paola Dameri & Beatrice D’Auria, 2016. "Smart Mobility in Smart City," Lecture Notes in Information Systems and Organization, in: Teresina Torre & Alessio Maria Braccini & Riccardo Spinelli (ed.), Empowering Organizations, edition 1, pages 13-28, Springer.
    3. Scora, George & Boriboonsomsin, Kanok & Barth, Matthew, 2015. "Value of eco-friendly route choice for heavy-duty trucks," Research in Transportation Economics, Elsevier, vol. 52(C), pages 3-14.
    4. Thomas Elliot & Javier Babí Almenar & Samuel Niza & Vânia Proença & Benedetto Rugani, 2019. "Pathways to Modelling Ecosystem Services within an Urban Metabolism Framework," Sustainability, MDPI, vol. 11(10), pages 1-22, May.
    5. Vito Albino & Umberto Berardi & Rosa Maria Dangelico, 2015. "Smart Cities: Definitions, Dimensions, Performance, and Initiatives," Journal of Urban Technology, Taylor & Francis Journals, vol. 22(1), pages 3-21, January.
    6. Desdemoustier, Jonathan & Crutzen, Nathalie & Giffinger, Rudolf, 2019. "Municipalities' understanding of the Smart City concept: An exploratory analysis in Belgium," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 129-141.
    7. McPhearson, Timon & Kremer, Peleg & Hamstead, Zoé A., 2013. "Mapping ecosystem services in New York City: Applying a social–ecological approach in urban vacant land," Ecosystem Services, Elsevier, vol. 5(C), pages 11-26.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Songling Chang & Melanie Kay Smith, 2023. "Residents’ Quality of Life in Smart Cities: A Systematic Literature Review," Land, MDPI, vol. 12(4), pages 1-17, April.
    2. Gabriele Cepeliauskaite & Benno Keppner & Zivile Simkute & Zaneta Stasiskiene & Leon Leuser & Ieva Kalnina & Nika Kotovica & Jānis Andiņš & Marek Muiste, 2021. "Smart-Mobility Services for Climate Mitigation in Urban Areas: Case Studies of Baltic Countries and Germany," Sustainability, MDPI, vol. 13(8), pages 1-19, April.
    3. Hailong Liu & Jiuye Zhao & Yu Wang & Nangai Yi & Chunyi Cui, 2021. "Strength Performance and Microstructure of Calcium Sulfoaluminate Cement-Stabilized Soft Soil," Sustainability, MDPI, vol. 13(4), pages 1-10, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anthea van der Hoogen & Ifeoluwapo Fashoro & Andre P. Calitz & Lamla Luke, 2024. "A Digital Transformation Framework for Smart Municipalities," Sustainability, MDPI, vol. 16(3), pages 1-28, February.
    2. Pamučar, Dragan & Durán-Romero, Gemma & Yazdani, Morteza & López, Ana M., 2023. "A decision analysis model for smart mobility system development under circular economy approach," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    3. Clement, Dr. Jessica & Crutzen, Prof. Nathalie, 2021. "How Local Policy Priorities Set the Smart City Agenda," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    4. Andrea Ciacci & Enrico Ivaldi & Reyes González-Relaño, 2021. "A Partially Non-Compensatory Method to Measure the Smart and Sustainable Level of Italian Municipalities," Sustainability, MDPI, vol. 13(1), pages 1-24, January.
    5. Maria Vincenza Ciasullo & Orlando Troisi & Mara Grimaldi & Daniele Leone, 2020. "Multi-level governance for sustainable innovation in smart communities: an ecosystems approach," International Entrepreneurship and Management Journal, Springer, vol. 16(4), pages 1167-1195, December.
    6. Johannes Stübinger & Lucas Schneider, 2020. "Understanding Smart City—A Data-Driven Literature Review," Sustainability, MDPI, vol. 12(20), pages 1-23, October.
    7. Erik Karger & Marvin Jagals & Frederik Ahlemann, 2021. "Blockchain for Smart Mobility—Literature Review and Future Research Agenda," Sustainability, MDPI, vol. 13(23), pages 1-32, November.
    8. Oleg Golubchikov & Mary J. Thornbush, 2022. "Smart Cities as Hybrid Spaces of Governance: Beyond the Hard/Soft Dichotomy in Cyber-Urbanization," Sustainability, MDPI, vol. 14(16), pages 1-12, August.
    9. Renata Biadacz & Marek Biadacz, 2021. "Implementation of “Smart” Solutions and An Attempt to Measure Them: A Case Study of Czestochowa, Poland," Energies, MDPI, vol. 14(18), pages 1-28, September.
    10. Kalina Grzesiuk & Dorota Jegorow & Monika Wawer & Anna Głowacz, 2023. "Energy-Efficient City Transportation Solutions in the Context of Energy-Conserving and Mobility Behaviours of Generation Z," Energies, MDPI, vol. 16(15), pages 1-28, August.
    11. Izabela Jonek-Kowalska & Radosław Wolniak, 2022. "Sharing Economies’ Initiatives in Municipal Authorities’ Perspective: Research Evidence from Poland in the Context of Smart Cities’ Development," Sustainability, MDPI, vol. 14(4), pages 1-22, February.
    12. Richard Hu, 2019. "The State of Smart Cities in China: The Case of Shenzhen," Energies, MDPI, vol. 12(22), pages 1-18, November.
    13. El Barachi, May & Salim, Taghreed Abu & Nyadzayo, Munyaradzi W. & Mathew, Sujith & Badewi, Amgad & Amankwah-Amoah, Joseph, 2022. "The relationship between citizen readiness and the intention to continuously use smart city services: Mediating effects of satisfaction and discomfort," Technology in Society, Elsevier, vol. 71(C).
    14. Miguel Manjon & Nathalie Crutzen, 2022. "Air quality in smart sustainable cities: target and/or trigger?," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 68(2), pages 359-386, April.
    15. Guido Perboli & Mariangela Rosano, 2020. "A Taxonomic Analysis of Smart City Projects in North America and Europe," Sustainability, MDPI, vol. 12(18), pages 1-23, September.
    16. Kusumastuti, Ratih Dyah & Nurmala, N. & Rouli, Juliana & Herdiansyah, Herdis, 2022. "Analyzing the factors that influence the seeking and sharing of information on the smart city digital platform: Empirical evidence from Indonesia," Technology in Society, Elsevier, vol. 68(C).
    17. Ben Zhang & Lei Ma & Zheng Liu, 2020. "Literature Trend Identification of Sustainable Technology Innovation: A Bibliometric Study Based on Co-Citation and Main Path Analysis," Sustainability, MDPI, vol. 12(20), pages 1-20, October.
    18. Koutra, Sesil & Becue, Vincent & Ioakimidis, Christos S., 2019. "Searching for the ‘smart’ definition through its spatial approach," Energy, Elsevier, vol. 169(C), pages 924-936.
    19. Fang Zhao & Catherine Prentice & Joseph Wallis & Arvind Patel & Marie-France Waxin, 2020. "An integrative study of the implications of the rise of coworking spaces in smart cities," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 8(2), pages 467-486, December.
    20. Francesco Pinna & Francesca Masala & Chiara Garau, 2017. "Urban Policies and Mobility Trends in Italian Smart Cities," Sustainability, MDPI, vol. 9(4), pages 1-21, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:12:p:5099-:d:375103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.