IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i12p5010-d373532.html
   My bibliography  Save this article

Identifying and Segmenting Commuting Behavior Patterns Based on Smart Card Data and Travel Survey Data

Author

Listed:
  • Pengfei Lin

    (The Key Laboratory of Transportation Engineering, Beijing University of Technology, No. 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China)

  • Jiancheng Weng

    (The Key Laboratory of Transportation Engineering, Beijing University of Technology, No. 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China)

  • Dimitrios Alivanistos

    (Elsevier B.V., Radarweg 29a, 1043 NX Amsterdam, The Netherlands)

  • Siyong Ma

    (The Key Laboratory of Transportation Engineering, Beijing University of Technology, No. 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China)

  • Baocai Yin

    (The Key Laboratory of Transportation Engineering, Beijing University of Technology, No. 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China)

Abstract

Understanding commuting patterns could provide effective support for the planning and operation of public transport systems. One-month smart card data and travel behavior survey data in Beijing were integrated to complement the socioeconomic attributes of cardholders. The light gradient boosting machine (LightGBM) was introduced to identify the commuting patterns considering the spatiotemporal regularity of travel behavior. Commuters were further divided into fine-grained clusters according to their departure time using the latent Dirichlet allocation model. To enhance the interpretation of the behavior patterns in each cluster, we investigated the relationship between the socioeconomic characteristics of the residence locations and commuter cluster distributions. Approximately 3.1 million cardholders were identified as commuters, accounting for 67.39% of daily passenger volume. Their commuting routes indicated the existence of job–house imbalance and excess commuting in Beijing. We further segmented commuters into six clusters with different temporal patterns, including two-peak, staggered shifts, flexible departure time, and single-peak. The residences of commuters are mainly concentrated in the low housing price and high or medium population density areas; subway facilities will promote people to commute using public transport. This study will help stakeholders optimize the public transport networks, scheduling scheme, and policy accordingly, thus ameliorating commuting within cities.

Suggested Citation

  • Pengfei Lin & Jiancheng Weng & Dimitrios Alivanistos & Siyong Ma & Baocai Yin, 2020. "Identifying and Segmenting Commuting Behavior Patterns Based on Smart Card Data and Travel Survey Data," Sustainability, MDPI, vol. 12(12), pages 1-18, June.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:12:p:5010-:d:373532
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/12/5010/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/12/5010/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yu, Chang & He, Zhao-Cheng, 2017. "Analysing the spatial-temporal characteristics of bus travel demand using the heat map," Journal of Transport Geography, Elsevier, vol. 58(C), pages 247-255.
    2. Jinjun Tang & Xiaolu Wang & Fang Zong & Zheng Hu, 2020. "Uncovering Spatio-temporal Travel Patterns Using a Tensor-based Model from Metro Smart Card Data in Shenzhen, China," Sustainability, MDPI, vol. 12(4), pages 1-16, February.
    3. Jie Huang & David Levinson & Jiaoe Wang & Jiangping Zhou & Zi-jia Wang, 2018. "Tracking job and housing dynamics with smartcard data," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 115(50), pages 12710-12715, December.
    4. Zhou, Jiangping & Murphy, Enda & Long, Ying, 2014. "Commuting efficiency in the Beijing metropolitan area: an exploration combining smartcard and travel survey data," Journal of Transport Geography, Elsevier, vol. 41(C), pages 175-183.
    5. Zhou, Jiangping & Murphy, Enda, 2019. "Day-to-day variation in excess commuting: An exploratory study of Brisbane, Australia," Journal of Transport Geography, Elsevier, vol. 74(C), pages 223-232.
    6. Qingru Zou & Xiangming Yao & Peng Zhao & Heng Wei & Hui Ren, 2018. "Detecting home location and trip purposes for cardholders by mining smart card transaction data in Beijing subway," Transportation, Springer, vol. 45(3), pages 919-944, May.
    7. Ma, Xiaolei & Liu, Congcong & Wen, Huimin & Wang, Yunpeng & Wu, Yao-Jan, 2017. "Understanding commuting patterns using transit smart card data," Journal of Transport Geography, Elsevier, vol. 58(C), pages 135-145.
    8. Cats, Oded & Wang, Qian & Zhao, Yu, 2015. "Identification and classification of public transport activity centres in Stockholm using passenger flows data," Journal of Transport Geography, Elsevier, vol. 48(C), pages 10-22.
    9. Chuan Ding & Donggen Wang & Xiaolei Ma & Haiying Li, 2016. "Predicting Short-Term Subway Ridership and Prioritizing Its Influential Factors Using Gradient Boosting Decision Trees," Sustainability, MDPI, vol. 8(11), pages 1-16, October.
    10. Marcińczak, Szymon & Bartosiewicz, Bartosz, 2018. "Commuting patterns and urban form: Evidence from Poland," Journal of Transport Geography, Elsevier, vol. 70(C), pages 31-39.
    11. Meina Zheng & Feng Liu & Xiucheng Guo & Xinyue Lei, 2019. "Assessing the Distribution of Commuting Trips and Jobs-Housing Balance Using Smart Card Data: A Case Study of Nanjing, China," Sustainability, MDPI, vol. 11(19), pages 1-19, September.
    12. Ed Manley & Chen Zhong & Michael Batty, 2018. "Spatiotemporal variation in travel regularity through transit user profiling," Transportation, Springer, vol. 45(3), pages 703-732, May.
    13. Jie Bao & Chengcheng Xu & Pan Liu & Wei Wang, 2017. "Exploring Bikesharing Travel Patterns and Trip Purposes Using Smart Card Data and Online Point of Interests," Networks and Spatial Economics, Springer, vol. 17(4), pages 1231-1253, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cankun Wei & Meichen Fu & Li Wang & Hanbing Yang & Feng Tang & Yuqing Xiong, 2022. "The Research Development of Hedonic Price Model-Based Real Estate Appraisal in the Era of Big Data," Land, MDPI, vol. 11(3), pages 1-30, February.
    2. Cardell-Oliver, Rachel & Olaru, Doina, 2022. "CIAM: A data-driven approach for classifying long-term engagement of public transport riders at multiple temporal scales," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 321-336.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Yang & Thill, Jean-Claude & Xu, Yang & Fang, Zhixiang, 2021. "Variability in individual home-work activity patterns," Journal of Transport Geography, Elsevier, vol. 90(C).
    2. Haonan Zhang & Hu Zhao & Saisai Meng & Yanghua Zhang, 2022. "Research on the Jobs-Housing Balance of Residents in Peri-Urbanization Areas in China: A Case Study of Zoucheng County," Sustainability, MDPI, vol. 14(13), pages 1-24, June.
    3. Christian Martin Mützel & Joachim Scheiner, 2022. "Investigating spatio-temporal mobility patterns and changes in metro usage under the impact of COVID-19 using Taipei Metro smart card data," Public Transport, Springer, vol. 14(2), pages 343-366, June.
    4. Pieroni, Caio & Giannotti, Mariana & Alves, Bianca B. & Arbex, Renato, 2021. "Big data for big issues: Revealing travel patterns of low-income population based on smart card data mining in a global south unequal city," Journal of Transport Geography, Elsevier, vol. 96(C).
    5. Yap, Menno & Munizaga, Marcela, 2018. "Workshop 8 report: Big data in the digital age and how it can benefit public transport users," Research in Transportation Economics, Elsevier, vol. 69(C), pages 615-620.
    6. Wang, Yihong & Correia, Gonçalo Homem de Almeida & de Romph, Erik & Timmermans, H.J.P., 2017. "Using metro smart card data to model location choice of after-work activities: An application to Shanghai," Journal of Transport Geography, Elsevier, vol. 63(C), pages 40-47.
    7. Chen, Wendong & Cheng, Long & Chen, Xuewu & Chen, Jingxu & Cao, Mengqiu, 2021. "Measuring accessibility to health care services for older bus passengers: A finer spatial resolution," Journal of Transport Geography, Elsevier, vol. 93(C).
    8. Shi, Shuyang & Wang, Lin & Wang, Xiaofan, 2022. "Uncovering the spatiotemporal motif patterns in urban mobility networks by non-negative tensor decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    9. Jie Huang & David Levinson & Jiaoe Wang & Haitao Jin, 2019. "Job-worker spatial dynamics in Beijing: Insights from Smart Card Data," Working Papers 2019-01, University of Minnesota: Nexus Research Group.
    10. Xia Zhao & Mengying Cui & David Levinson, 2023. "Exploring temporal variability in travel patterns on public transit using big smart card data," Environment and Planning B, , vol. 50(1), pages 198-217, January.
    11. Shah, Nitesh R. & Guo, Jing & Han, Lee D. & Cherry, Christopher R., 2023. "Why do people take e-scooter trips? Insights on temporal and spatial usage patterns of detailed trip data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    12. Qi-Li Gao & Qing-Quan Li & Yan Zhuang & Yang Yue & Zhen-Zhen Liu & Shui-Quan Li & Daniel Sui, 2019. "Urban commuting dynamics in response to public transit upgrades: A big data approach," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-18, October.
    13. Yixiao Li & Zhaoxin Dai & Lining Zhu & Xiaoli Liu, 2019. "Analysis of Spatial and Temporal Characteristics of Citizens’ Mobility Based on E-Bike GPS Trajectory Data in Tengzhou City, China," Sustainability, MDPI, vol. 11(18), pages 1-17, September.
    14. Fulman, Nir & Marinov, Maria & Benenson, Itzhak, 2023. "Investigating occasional travel patterns based on smartcard transactions," Transport Policy, Elsevier, vol. 141(C), pages 152-166.
    15. Nadav Shalit & Michael Fire & Eran Ben-Elia, 2023. "A supervised machine learning model for imputing missing boarding stops in smart card data," Public Transport, Springer, vol. 15(2), pages 287-319, June.
    16. Songkorn Siangsuebchart & Sarawut Ninsawat & Apichon Witayangkurn & Surachet Pravinvongvuth, 2021. "Public Transport GPS Probe and Rail Gate Data for Assessing the Pattern of Human Mobility in the Bangkok Metropolitan Region, Thailand," Sustainability, MDPI, vol. 13(4), pages 1-29, February.
    17. Enhui Chen & Zhirui Ye & Hui Bi, 2019. "Incorporating Smart Card Data in Spatio-Temporal Analysis of Metro Travel Distances," Sustainability, MDPI, vol. 11(24), pages 1-22, December.
    18. Zhan, Zilin & Guo, Yuanyuan & Noland, Robert B. & He, Sylvia Y. & Wang, Yacan, 2023. "Analysis of links between dockless bikeshare and metro trips in Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    19. Ross-Perez, Antonio & Walton, Neil & Pinto, Nuno, 2022. "Identifying trip purpose from a dockless bike-sharing system in Manchester," Journal of Transport Geography, Elsevier, vol. 99(C).
    20. Yang, Binyu & Tian, Yuan & Wang, Jian & Hu, Xiaowei & An, Shi, 2022. "How to improve urban transportation planning in big data era? A practice in the study of traffic analysis zone delineation," Transport Policy, Elsevier, vol. 127(C), pages 1-14.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:12:p:5010-:d:373532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.