IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i11p4739-d369789.html
   My bibliography  Save this article

Thermodynamic Performance and Water Consumption of Hybrid Cooling System Configurations for Concentrated Solar Power Plants

Author

Listed:
  • Faisal Asfand

    (Centre for Thermal Energy Systems and Materials, School of Water Energy and Environment, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK)

  • Patricia Palenzuela

    (CIEMAT—Plataforma Solar de Almería, Ctra. De Senés s/n, 04200 Tabernas, Almería, Spain)

  • Lidia Roca

    (CIEMAT—Plataforma Solar de Almería, Ctra. De Senés s/n, 04200 Tabernas, Almería, Spain)

  • Adèle Caron

    (Hamon D’Hondt, Fresnes-sur-Escaut, 59970 Hauts-de-France, France)

  • Charles-André Lemarié

    (Hamon D’Hondt, Fresnes-sur-Escaut, 59970 Hauts-de-France, France)

  • Jon Gillard

    (Centre for Thermal Energy Systems and Materials, School of Water Energy and Environment, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK)

  • Peter Turner

    (Centre for Thermal Energy Systems and Materials, School of Water Energy and Environment, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK)

  • Kumar Patchigolla

    (Centre for Thermal Energy Systems and Materials, School of Water Energy and Environment, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK)

Abstract

The use of wet cooling in Concentrated Solar Power (CSP) plants tends to be an unfavourable option in regions where water is scarce due to the high water requirements of the method. Dry-cooling systems allow a water consumption reduction of up to 80% but at the expense of lower electricity production. A hybrid cooling system (the combination of dry and wet cooling) offers the advantages of each process in terms of lower water consumption and higher electricity production. A model of a CSP plant which integrates a hybrid cooling system has been implemented in Thermoflex software. The water consumption and the net power generation have been evaluated for different configurations of the hybrid cooling system: series, parallel, series-parallel and parallel-series. It was found that the most favourable configuration in terms of water saving was series-parallel, in which a water reduction of up to 50% is possible compared to the only-wet cooling option, whereas an increase of 2.5% in the power generation is possible compared to the only-dry cooling option. The parallel configuration was the best in terms of power generation with an increase of 3.2% when compared with the only-dry cooling option, and a reduction of 30% water consumption compared to the only-wet cooling option.

Suggested Citation

  • Faisal Asfand & Patricia Palenzuela & Lidia Roca & Adèle Caron & Charles-André Lemarié & Jon Gillard & Peter Turner & Kumar Patchigolla, 2020. "Thermodynamic Performance and Water Consumption of Hybrid Cooling System Configurations for Concentrated Solar Power Plants," Sustainability, MDPI, vol. 12(11), pages 1-19, June.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:11:p:4739-:d:369789
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/11/4739/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/11/4739/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fontina Petrakopoulou & Marina Olmeda-Delgado, 2019. "Studying the Reduction of Water Use in Integrated Solar Combined-Cycle Plants," Sustainability, MDPI, vol. 11(7), pages 1-27, April.
    2. Blanco-Marigorta, Ana M. & Victoria Sanchez-Henríquez, M. & Peña-Quintana, Juan A., 2011. "Exergetic comparison of two different cooling technologies for the power cycle of a thermal power plant," Energy, Elsevier, vol. 36(4), pages 1966-1972.
    3. Zhang, H.L. & Baeyens, J. & Degrève, J. & Cacères, G., 2013. "Concentrated solar power plants: Review and design methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 466-481.
    4. Barigozzi, G. & Perdichizzi, A. & Ravelli, S., 2011. "Wet and dry cooling systems optimization applied to a modern waste-to-energy cogeneration heat and power plant," Applied Energy, Elsevier, vol. 88(4), pages 1366-1376, April.
    5. Colmenar-Santos, Antonio & Borge-Diez, David & Molina, Clara Pérez & Castro-Gil, Manuel, 2014. "Water consumption in solar parabolic trough plants: review and analysis of the southern Spain case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 565-577.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tarun Kumar Aseri & Chandan Sharma & Tara C. Kandpal, 2022. "Condenser cooling technologies for concentrating solar power plants: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4511-4565, April.
    2. Palenzuela, Patricia & Roca, Lidia & Asfand, Faisal & Patchigolla, Kumar, 2022. "Experimental assessment of a pilot scale hybrid cooling system for water consumption reduction in CSP plants," Energy, Elsevier, vol. 242(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tarun Kumar Aseri & Chandan Sharma & Tara C. Kandpal, 2022. "Condenser cooling technologies for concentrating solar power plants: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4511-4565, April.
    2. Palenzuela, Patricia & Roca, Lidia & Asfand, Faisal & Patchigolla, Kumar, 2022. "Experimental assessment of a pilot scale hybrid cooling system for water consumption reduction in CSP plants," Energy, Elsevier, vol. 242(C).
    3. Lozano-Santamaria, Federico & Luceño, José A. & Martín, Mariano & Macchietto, Sandro, 2020. "Stochastic modelling of sandstorms affecting the optimal operation and cleaning scheduling of air coolers in concentrated solar power plants," Energy, Elsevier, vol. 213(C).
    4. Martín, Mariano, 2015. "Optimal annual operation of the dry cooling system of a concentrated solar energy plant in the south of Spain," Energy, Elsevier, vol. 84(C), pages 774-782.
    5. Luceño, José A. & Martín, Mariano, 2018. "Two-step optimization procedure for the conceptual design of A-frame systems for solar power plants," Energy, Elsevier, vol. 165(PB), pages 483-500.
    6. Xu, Xinhai & Vignarooban, K. & Xu, Ben & Hsu, K. & Kannan, A.M., 2016. "Prospects and problems of concentrating solar power technologies for power generation in the desert regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1106-1131.
    7. Martín, Mariano & Martín, Mónica, 2017. "Cooling limitations in power plants: Optimal multiperiod design of natural draft cooling towers," Energy, Elsevier, vol. 135(C), pages 625-636.
    8. Miguel J. Prieto & Juan Á. Martínez & Rogelio Peón & Lourdes Á. Barcia & Fernando Nuño, 2017. "On the Convenience of Using Simulation Models to Optimize the Control Strategy of Molten-Salt Heat Storage Systems in Solar Thermal Power Plants," Energies, MDPI, vol. 10(7), pages 1-17, July.
    9. Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.
    10. Bai, Wengang & Li, Hongzhi & Zhang, Xuwei & Qiao, Yongqiang & Zhang, Chun & Gao, Wei & Yao, Mingyu, 2022. "Thermodynamic analysis of CO2–SF6 mixture working fluid supercritical Brayton cycle used for solar power plants," Energy, Elsevier, vol. 261(PB).
    11. Luca Cirillo & Adriana Greco & Claudia Masselli, 2023. "A Solid-to-Solid 2D Model of a Magnetocaloric Cooler with Thermal Diodes: A Sustainable Way for Refrigerating," Energies, MDPI, vol. 16(13), pages 1-17, July.
    12. Awan, Ahmed Bilal & Zubair, Muhammad & Chandra Mouli, Kotturu V.V., 2020. "Design, optimization and performance comparison of solar tower and photovoltaic power plants," Energy, Elsevier, vol. 199(C).
    13. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    14. Wilberforce, Tabbi & El Hassan, Zaki & Durrant, A. & Thompson, J. & Soudan, Bassel & Olabi, A.G., 2019. "Overview of ocean power technology," Energy, Elsevier, vol. 175(C), pages 165-181.
    15. Peiró, Gerard & Prieto, Cristina & Gasia, Jaume & Jové, Aleix & Miró, Laia & Cabeza, Luisa F., 2018. "Two-tank molten salts thermal energy storage system for solar power plants at pilot plant scale: Lessons learnt and recommendations for its design, start-up and operation," Renewable Energy, Elsevier, vol. 121(C), pages 236-248.
    16. Mena, R. & Escobar, R. & Lorca, Á. & Negrete-Pincetic, M. & Olivares, D., 2019. "The impact of concentrated solar power in electric power systems: A Chilean case study," Applied Energy, Elsevier, vol. 235(C), pages 258-283.
    17. Tehrani, S. Saeed Mostafavi & Taylor, Robert A. & Saberi, Pouya & Diarce, Gonzalo, 2016. "Design and feasibility of high temperature shell and tube latent heat thermal energy storage system for solar thermal power plants," Renewable Energy, Elsevier, vol. 96(PA), pages 120-136.
    18. Meysam Karami Rad & Mahmoud Omid & Ali Rajabipour & Fariba Tajabadi & Lasse Aistrup Rosendahl & Alireza Rezaniakolaei, 2018. "Optimum Thermal Concentration of Solar Thermoelectric Generators (STEG) in Realistic Meteorological Condition," Energies, MDPI, vol. 11(9), pages 1-16, September.
    19. Lim, Jin Han & Hu, Eric & Nathan, Graham J., 2016. "Impact of start-up and shut-down losses on the economic benefit of an integrated hybrid solar cavity receiver and combustor," Applied Energy, Elsevier, vol. 164(C), pages 10-20.
    20. Boukelia, T.E. & Bouraoui, A. & Laouafi, A. & Djimli, S. & Kabar, Y., 2020. "3E (Energy-Exergy-Economic) comparative study of integrating wet and dry cooling systems in solar tower power plants," Energy, Elsevier, vol. 200(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:11:p:4739-:d:369789. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.