IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v88y2011i4p1366-1376.html
   My bibliography  Save this article

Wet and dry cooling systems optimization applied to a modern waste-to-energy cogeneration heat and power plant

Author

Listed:
  • Barigozzi, G.
  • Perdichizzi, A.
  • Ravelli, S.

Abstract

In Brescia, Italy, heat is delivered to 70% of 200.000 city inhabitants by means of a district heating system, mainly supplied by a waste to energy plant, utilizing the non recyclable fraction of municipal and industrial solid waste (800,000 tons/year, otherwise landfilled), thus saving annually over 150,000 tons of oil equivalent and over 400,000 tons of CO2 emissions. This study shows how the performance of the waste-to-energy cogeneration plant can be improved by optimising the condensation system, with particular focus on the combination of wet and dry cooling systems. The analysis has been carried out using two subsequent steps: in the first one a schematic model of the steam cycle was accomplished in order to acquire a knowledge base about the variables that would be most influential on the performance. In the second step the electric power output for different operating conditions was predicted and optimized in a homemade program. In more details, a thermodynamic analysis of the steam cycle, according to the design operating condition, was performed by means of a commercial code (Thermoflex©) dedicated to power plant modelling. Then the off-design behaviour was investigated by varying not only the ambient conditions but also several parameters connected to the heat rejection rate, like the heat required from district heating and the auxiliaries load. Each of these parameters has been addressed and considered in determining the overall performance of the thermal cycle. After that, a complete prediction of the cycle behaviour was performed by simultaneously varying different operating conditions. Finally, a Matlab© computer code was developed in order to optimize the net electric power as a function of the way in which the condensation is operated. The result is an optimum set of variables allowing the wet and dry cooling system to be regulated in such a way that the maximum power is achieved. The best strategy consists in using the maximum amount of heat rejection in the wet cooling system to reduce the operational cost of the dry one.

Suggested Citation

  • Barigozzi, G. & Perdichizzi, A. & Ravelli, S., 2011. "Wet and dry cooling systems optimization applied to a modern waste-to-energy cogeneration heat and power plant," Applied Energy, Elsevier, vol. 88(4), pages 1366-1376, April.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:4:p:1366-1376
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(10)00388-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin-gang, Zhao & Gui-wu, Jiang & Ang, Li & Yun, Li, 2016. "Technology, cost, a performance of waste-to-energy incineration industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 115-130.
    2. de la Calle, Alberto & Bayon, Alicia & Soo Too, Yen Chean, 2018. "Impact of ambient temperature on supercritical CO2 recompression Brayton cycle in arid locations: Finding the optimal design conditions," Energy, Elsevier, vol. 153(C), pages 1016-1027.
    3. Yang, L.J. & Wang, M.H. & Du, X.Z. & Yang, Y.P., 2012. "Trapezoidal array of air-cooled condensers to restrain the adverse impacts of ambient winds in a power plant," Applied Energy, Elsevier, vol. 99(C), pages 402-413.
    4. Tarun Kumar Aseri & Chandan Sharma & Tara C. Kandpal, 2022. "Condenser cooling technologies for concentrating solar power plants: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4511-4565, April.
    5. Walraven, Daniël & Laenen, Ben & D’haeseleer, William, 2015. "Minimizing the levelized cost of electricity production from low-temperature geothermal heat sources with ORCs: Water or air cooled?," Applied Energy, Elsevier, vol. 142(C), pages 144-153.
    6. Namuli, R. & Pillay, P. & Jaumard, B. & Laflamme, C.B., 2013. "Threshold herd size for commercial viability of biomass waste to energy conversion systems on rural farms," Applied Energy, Elsevier, vol. 108(C), pages 308-322.
    7. Ehsan, M. Monjurul & Guan, Zhiqiang & Gurgenci, Hal & Klimenko, Alexander, 2020. "Feasibility of dry cooling in supercritical CO2 power cycle in concentrated solar power application: Review and a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    8. Lozano-Santamaria, Federico & Luceño, José A. & Martín, Mariano & Macchietto, Sandro, 2020. "Stochastic modelling of sandstorms affecting the optimal operation and cleaning scheduling of air coolers in concentrated solar power plants," Energy, Elsevier, vol. 213(C).
    9. Li, Xiaoen & Wang, Ningling & Wang, Ligang & Yang, Yongping & Maréchal, François, 2018. "Identification of optimal operating strategy of direct air-cooling condenser for Rankine cycle based power plants," Applied Energy, Elsevier, vol. 209(C), pages 153-166.
    10. Wang, Weiliang & Zhang, Hai & Liu, Pei & Li, Zheng & Lv, Junfu & Ni, Weidou, 2017. "The cooling performance of a natural draft dry cooling tower under crosswind and an enclosure approach to cooling efficiency enhancement," Applied Energy, Elsevier, vol. 186(P3), pages 336-346.
    11. Martín, Mariano, 2015. "Optimal annual operation of the dry cooling system of a concentrated solar energy plant in the south of Spain," Energy, Elsevier, vol. 84(C), pages 774-782.
    12. Tonini, Davide & Dorini, Gianluca & Astrup, Thomas Fruergaard, 2014. "Bioenergy, material, and nutrients recovery from household waste: Advanced material, substance, energy, and cost flow analysis of a waste refinery process," Applied Energy, Elsevier, vol. 121(C), pages 64-78.
    13. Hu, Hemin & Li, Zhigang & Jiang, Yuyan & Du, Xiaoze, 2018. "Thermodynamic characteristics of thermal power plant with hybrid (dry/wet) cooling system," Energy, Elsevier, vol. 147(C), pages 729-741.
    14. Sagia, Z. & Rakopoulos, C. & Kakaras, E., 2012. "Cooling dominated Hybrid Ground Source Heat Pump System application," Applied Energy, Elsevier, vol. 94(C), pages 41-47.
    15. Martín, Mariano & Martín, Mónica, 2017. "Cooling limitations in power plants: Optimal multiperiod design of natural draft cooling towers," Energy, Elsevier, vol. 135(C), pages 625-636.
    16. Li, Xiaoxiao & Duniam, Sam & Gurgenci, Hal & Guan, Zhiqiang & Veeraragavan, Anand, 2017. "Full scale experimental study of a small natural draft dry cooling tower for concentrating solar thermal power plant," Applied Energy, Elsevier, vol. 193(C), pages 15-27.
    17. Salgado, R. & Belmonte, J.F. & Almendros-Ibáñez, J.A. & Molina, A.E., 2017. "Integration of absorption refrigeration systems into Rankine power cycles to reduce water consumption: A thermodynamic analysis," Energy, Elsevier, vol. 119(C), pages 1084-1097.
    18. Chen, Lei & Yang, Lijun & Du, Xiaoze & Yang, Yongping, 2016. "A novel layout of air-cooled condensers to improve thermo-flow performances," Applied Energy, Elsevier, vol. 165(C), pages 244-259.
    19. Barigozzi, G. & Perdichizzi, A. & Ravelli, S., 2014. "Performance prediction and optimization of a waste-to-energy cogeneration plant with combined wet and dry cooling system," Applied Energy, Elsevier, vol. 115(C), pages 65-74.
    20. Luceño, José A. & Martín, Mariano, 2018. "Two-step optimization procedure for the conceptual design of A-frame systems for solar power plants," Energy, Elsevier, vol. 165(PB), pages 483-500.
    21. Kong, Yanqiang & Wang, Weijia & Yang, Lijun & Du, Xiaoze, 2020. "Energy efficient strategies for anti-freezing of air-cooled heat exchanger," Applied Energy, Elsevier, vol. 261(C).
    22. Faisal Asfand & Patricia Palenzuela & Lidia Roca & Adèle Caron & Charles-André Lemarié & Jon Gillard & Peter Turner & Kumar Patchigolla, 2020. "Thermodynamic Performance and Water Consumption of Hybrid Cooling System Configurations for Concentrated Solar Power Plants," Sustainability, MDPI, vol. 12(11), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:4:p:1366-1376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.