IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i10p4242-d361442.html
   My bibliography  Save this article

Environmental and Economic Constraints on the Use of Lubricant Oils for Wind and Hydropower Generation: The Case of NATURGY

Author

Listed:
  • Gabriel A. González-Reyes

    (Universidade de Vigo, 36310 Vigo, Spain
    These authors contributed equally to this work.)

  • Susana Bayo-Besteiro

    (EPhysLab & CIM, Universidade de Vigo, 32004 Ourense, Spain
    These authors contributed equally to this work.)

  • Jordi Vich Llobet

    (Naturgy, 28033 Madrid, Spain
    These authors contributed equally to this work.)

  • Juan A. Añel

    (EPhysLab & CIM, Universidade de Vigo, 32004 Ourense, Spain
    These authors contributed equally to this work.)

Abstract

Lubricant oil is an essential element in wind and hydropower generation. We present a lifecycle assessment (LCA) of the lubricant oils (mineral, synthetic and biodegradable) used in hydropower and wind power generation. The results are given in terms of energy used, associated emissions and costs. We find that, for the oil turbines and regulation systems considered here, biodegradable oil is a better option in terms of energy and CO 2 equivalent emissions than mineral or synthetic oils, from production and recycling through to handling. However, synthetic and mineral oils are better options due to the potential risks associated with the use of biodegradable oil, generally when it comes into contact with water. There are also significant savings to be made in the operation of wind turbines when using an improved type of synthetic oil.

Suggested Citation

  • Gabriel A. González-Reyes & Susana Bayo-Besteiro & Jordi Vich Llobet & Juan A. Añel, 2020. "Environmental and Economic Constraints on the Use of Lubricant Oils for Wind and Hydropower Generation: The Case of NATURGY," Sustainability, MDPI, vol. 12(10), pages 1-15, May.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:10:p:4242-:d:361442
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/10/4242/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/10/4242/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Yuxuan & Sun, Tianye, 2012. "Life cycle assessment of CO2 emissions from wind power plants: Methodology and case studies," Renewable Energy, Elsevier, vol. 43(C), pages 30-36.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiajun Liu & Haokun Lin & Yue Liu & Lei Xiong & Chenjing Li & Tinghu Zhou & Mike Ma, 2023. "Global Relation-Aware-Based Oil Detection Method for Water Surface of Catchment Wells in Hydropower Stations," Sustainability, MDPI, vol. 15(8), pages 1-18, April.
    2. Emanuele Quaranta, 2023. "Lubricant Oil Consumption and Opportunities for Oil-Free Turbines in the Hydropower Sector: A European Assessment," Energies, MDPI, vol. 16(2), pages 1-7, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fangyi Li & Zhaoyang Ye & Xilin Xiao & Dawei Ma, 2019. "Environmental Benefits of Stock Evolution of Coal-Fired Power Generators in China," Sustainability, MDPI, vol. 11(19), pages 1-17, October.
    2. Niklas Andersen & Ola Eriksson & Karl Hillman & Marita Wallhagen, 2016. "Wind Turbines’ End-of-Life: Quantification and Characterisation of Future Waste Materials on a National Level," Energies, MDPI, vol. 9(12), pages 1-24, November.
    3. Cui, Qi & He, Ling & Han, Guoyi & Chen, Hao & Cao, Juanjuan, 2020. "Review on climate and water resource implications of reducing renewable power curtailment in China: A nexus perspective," Applied Energy, Elsevier, vol. 267(C).
    4. Zhao, Xiaoli & Cai, Qiong & Zhang, Sufang & Luo, Kaiyan, 2017. "The substitution of wind power for coal-fired power to realize China's CO2 emissions reduction targets in 2020 and 2030," Energy, Elsevier, vol. 120(C), pages 164-178.
    5. Zhang, Xiaoyue & Huang, Guohe & Liu, Lirong & Li, Kailong, 2022. "Development of a stochastic multistage lifecycle programming model for electric power system planning – A case study for the Province of Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    6. Alizadeh, Sadegh & Avami, Akram, 2021. "Development of a framework for the sustainability evaluation of renewable and fossil fuel power plants using integrated LCA-emergy analysis: A case study in Iran," Renewable Energy, Elsevier, vol. 179(C), pages 1548-1564.
    7. Mohamed R. Gomaa & Hegazy Rezk & Ramadan J. Mustafa & Mujahed Al-Dhaifallah, 2019. "Evaluating the Environmental Impacts and Energy Performance of a Wind Farm System Utilizing the Life-Cycle Assessment Method: A Practical Case Study," Energies, MDPI, vol. 12(17), pages 1-25, August.
    8. Antenucci, Andrea & Sansavini, Giovanni, 2019. "Extensive CO2 recycling in power systems via Power-to-Gas and network storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 33-43.
    9. Smith, Jo & Nayak, Dali Rani & Smith, Pete, 2014. "Wind farms on undegraded peatlands are unlikely to reduce future carbon emissions," Energy Policy, Elsevier, vol. 66(C), pages 585-591.
    10. Yashuang Feng & Lixiao Zhang, 2023. "The GHG Intensities of Wind Power Plants in China from a Life-Cycle Perspective: The Impacts of Geographical Location, Turbine Technology and Management Level," Sustainability, MDPI, vol. 15(5), pages 1-17, March.
    11. Anne P. M. Velenturf, 2021. "A Framework and Baseline for the Integration of a Sustainable Circular Economy in Offshore Wind," Energies, MDPI, vol. 14(17), pages 1-41, September.
    12. Jian Li & Xiangnan Wang & Huamei Wang & Yuanfei Zhang & Cailin Zhang & Hongrui Xu & Bijun Wu, 2024. "Research on the Accounting and Prediction of Carbon Emission from Wave Energy Convertor Based on the Whole Lifecycle," Energies, MDPI, vol. 17(7), pages 1-15, March.
    13. Shahabi, Maedeh P. & McHugh, Adam & Anda, Martin & Ho, Goen, 2014. "Environmental life cycle assessment of seawater reverse osmosis desalination plant powered by renewable energy," Renewable Energy, Elsevier, vol. 67(C), pages 53-58.
    14. Al-Behadili, S.H. & El-Osta, W.B., 2015. "Life Cycle Assessment of Dernah (Libya) wind farm," Renewable Energy, Elsevier, vol. 83(C), pages 1227-1233.
    15. Ozoemena, Matthew & Hasan, Reaz & Cheung, Wai Ming, 2016. "Analysis of technology improvement opportunities for a 1.5 MW wind turbine using a hybrid stochastic approach in life cycle assessment," Renewable Energy, Elsevier, vol. 93(C), pages 369-382.
    16. Małgorzata Jastrzębska, 2022. "Installation’s Conception in the Field of Renewable Energy Sources for the Needs of the Silesian Botanical Garden," Energies, MDPI, vol. 15(18), pages 1-28, September.
    17. Nagashima, Shin & Uchiyama, Yohji & Okajima, Keiichi, 2017. "Hybrid input–output table method for socioeconomic and environmental assessment of a wind power generation system," Applied Energy, Elsevier, vol. 185(P2), pages 1067-1075.
    18. Jussi Vimpari, 2020. "Financing Energy Transition with Real Estate Wealth," Energies, MDPI, vol. 13(17), pages 1-10, August.
    19. Cartelle Barros, Juan José & Lara Coira, Manuel & de la Cruz López, María Pilar & del Caño Gochi, Alfredo & Soares, Isabel, 2020. "Probabilistic multicriteria environmental assessment of power plants: A global approach," Applied Energy, Elsevier, vol. 260(C).
    20. Campos-Guzmán, Verónica & García-Cáscales, M. Socorro & Espinosa, Nieves & Urbina, Antonio, 2019. "Life Cycle Analysis with Multi-Criteria Decision Making: A review of approaches for the sustainability evaluation of renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 343-366.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:10:p:4242-:d:361442. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.