IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i10p4068-d358762.html
   My bibliography  Save this article

Performance Analysis of an Integrated Solar Dehumidification System with HVAC in A Typical Corner Store in the USA

Author

Listed:
  • Fahad A. Almehmadi

    (Department of Mechanical Engineering and Aerospace Engineering, University of Dayton, Dayton, OH 45469-0238, USA)

  • Kevin P. Hallinan

    (Department of Mechanical Engineering and Aerospace Engineering, University of Dayton, Dayton, OH 45469-0238, USA)

Abstract

Food deserts have emerged in underserved urban and rural areas throughout the United States. Corner markets have filled the food voids, but generally without offering residents access to healthy food. The economics for doing so are prohibitive. The purpose of the study is to investigate an opportunity for reducing corner store energy costs in order to make possible retail of fresh produce and meat. Given the typical dominance of refrigeration to the energy cost in such stores, an integrated solar dehumidification system with heating, ventilation, and air conditioning (HVAC) is considered. A typical corner store baseline reliant upon conventional refrigeration and HVAC equipment is defined to serve as a basis for comparison. MATLAB Simulink dynamic models are developed for the posed system and baseline model. The results show energy reduction in the refrigerated cabinets of maximally 28%, 27%, and 20%, respectively, in Dayton, OH, Phoenix, AZ, and Pine Bluff, AR. The respective HVAC energy savings are respectively 28%, 56%, and 4%. Collectively these correspond to total annual energy savings of 43%, 51%, and 53%, translating to annual energy cost savings of greater than $12K in all locations.

Suggested Citation

  • Fahad A. Almehmadi & Kevin P. Hallinan, 2020. "Performance Analysis of an Integrated Solar Dehumidification System with HVAC in A Typical Corner Store in the USA," Sustainability, MDPI, vol. 12(10), pages 1-26, May.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:10:p:4068-:d:358762
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/10/4068/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/10/4068/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pedro Núñez-Cacho & Valentín Molina-Moreno & Francisco A. Corpas-Iglesias & Francisco J. Cortés-García, 2018. "Family Businesses Transitioning to a Circular Economy Model: The Case of “Mercadona”," Sustainability, MDPI, vol. 10(2), pages 1-19, February.
    2. Ferreira, Ana & Pinheiro, Manuel Duarte & de Brito, Jorge & Mateus, Ricardo, 2018. "Combined carbon and energy intensity benchmarks for sustainable retail stores," Energy, Elsevier, vol. 165(PB), pages 877-889.
    3. Ge, T.S. & Li, Y. & Wang, R.Z. & Dai, Y.J., 2008. "A review of the mathematical models for predicting rotary desiccant wheel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(6), pages 1485-1528, August.
    4. Bahman, Ammar & Rosario, Luis & Rahman, Muhammad M., 2012. "Analysis of energy savings in a supermarket refrigeration/HVAC system," Applied Energy, Elsevier, vol. 98(C), pages 11-21.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ge, T.S. & Dai, Y.J. & Wang, R.Z. & Li, Y., 2015. "Performance of two-stage rotary desiccant cooling system with different regeneration temperatures," Energy, Elsevier, vol. 80(C), pages 556-566.
    2. Du, Xiaoyun & Meng, Conghui & Guo, Zhenhua & Yan, Hang, 2023. "An improved approach for measuring the efficiency of low carbon city practice in China," Energy, Elsevier, vol. 268(C).
    3. Daozhi Zhao & Jiaqin Hao & Cejun Cao & Hongshuai Han, 2019. "Evolutionary Game Analysis of Three-Player for Low-Carbon Production Capacity Sharing," Sustainability, MDPI, vol. 11(11), pages 1-20, May.
    4. Ge, T.S. & Dai, Y.J. & Wang, R.Z., 2014. "Review on solar powered rotary desiccant wheel cooling system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 476-497.
    5. Wang, Nan & Zhang, Jiangfeng & Xia, Xiaohua, 2013. "Desiccant wheel thermal performance modeling for indoor humidity optimal control," Applied Energy, Elsevier, vol. 112(C), pages 999-1005.
    6. Ana Ferreira & Manuel Duarte Pinheiro & Jorge de Brito & Ricardo Mateus, 2022. "Embodied vs. Operational Energy and Carbon in Retail Building Shells: A Case Study in Portugal," Energies, MDPI, vol. 16(1), pages 1-23, December.
    7. Jakob Pohlisch, 2020. "Internal Open Innovation—Lessons Learned from Internal Crowdsourcing at SAP," Sustainability, MDPI, vol. 12(10), pages 1-22, May.
    8. Sphaier, L.A. & Nóbrega, C.E.L., 2012. "Parametric analysis of components effectiveness on desiccant cooling system performance," Energy, Elsevier, vol. 38(1), pages 157-166.
    9. B. Kiran Naik & Mullapudi Joshi & Palanisamy Muthukumar & Muhammad Sultan & Takahiko Miyazaki & Redmond R. Shamshiri & Hadeed Ashraf, 2020. "Investigating Solid and Liquid Desiccant Dehumidification Options for Room Air-Conditioning and Drying Applications," Sustainability, MDPI, vol. 12(24), pages 1-22, December.
    10. Meisam Ranjbari & Gustavo Morales-Alonso & Ruth Carrasco-Gallego, 2018. "Conceptualizing the Sharing Economy through Presenting a Comprehensive Framework," Sustainability, MDPI, vol. 10(7), pages 1-24, July.
    11. Jagirdar, Mrinal & Lee, Poh Seng, 2018. "Mathematical modeling and performance evaluation of a desiccant coated fin-tube heat exchanger," Applied Energy, Elsevier, vol. 212(C), pages 401-415.
    12. Elena Aurelia Botezat & Anca Otilia Dodescu & Sebastian Văduva & Silvia Liana Fotea, 2018. "An Exploration of Circular Economy Practices and Performance Among Romanian Producers," Sustainability, MDPI, vol. 10(9), pages 1-17, September.
    13. Siniša Arsić & Koviljka Banjević & Aleksandra Nastasić & Dragana Rošulj & Miloš Arsić, 2018. "Family Business Owner as a Central Figure in Customer Relationship Management," Sustainability, MDPI, vol. 11(1), pages 1-19, December.
    14. Bi, Yin & Yang, Wansheng & Zhao, Xudong, 2018. "Numerical investigation of a solar/waste energy driven sorption/desorption cycle employing a novel adsorbent bed," Energy, Elsevier, vol. 149(C), pages 84-97.
    15. Shamim, Jubair A. & Hsu, Wei-Lun & Paul, Soumyadeep & Yu, Lili & Daiguji, Hirofumi, 2021. "A review of solid desiccant dehumidifiers: Current status and near-term development goals in the context of net zero energy buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    16. Xiaojun Wu & Jiabin Shen, 2018. "A Study on Airbnb’s Trust Mechanism and the Effects of Cultural Values—Based on a Survey of Chinese Consumers," Sustainability, MDPI, vol. 10(9), pages 1-22, August.
    17. Yeboah, S.K. & Darkwa, J., 2016. "A critical review of thermal enhancement of packed beds for water vapour adsorption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1500-1520.
    18. Jesús Morcillo-Bellido & Luis Isasi-Sanchez & Isabel Garcia-Gutierrez & Alfonso Duran-Heras, 2021. "Model Based Analysis of Innovation in Sustainable Supply Chains," Sustainability, MDPI, vol. 13(9), pages 1-20, April.
    19. Pedro Nuñez-Cacho & Jaroslaw Górecki & Valentín Molina-Moreno & Francisco A. Corpas-Iglesias, 2018. "What Gets Measured, Gets Done: Development of a Circular Economy Measurement Scale for Building Industry," Sustainability, MDPI, vol. 10(7), pages 1-22, July.
    20. Fahad Awjah Almehmadi & Kevin P. Hallinan & Rydge B. Mulford & Saeed A. Alqaed, 2020. "Technology to Address Food Deserts: Low Energy Corner Store Groceries with Integrated Agriculture Greenhouse," Sustainability, MDPI, vol. 12(18), pages 1-22, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:10:p:4068-:d:358762. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.