IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2019i1p150-d301279.html
   My bibliography  Save this article

Biotope Area Factor: An Ecological Urban Index to Geovisualize Soil Sealing in Padua, Italy

Author

Listed:
  • Francesca Peroni

    (Department of Historical and Geographic Sciences and the Ancient World—DiSSGeA, University of Padova, 35141 Padova, Italy)

  • Guglielmo Pristeri

    (Department of Civil, Environmental and Architectural Engineering, University of Padova, 35131 Padova, Italy)

  • Daniele Codato

    (Department of Civil, Environmental and Architectural Engineering, University of Padova, 35131 Padova, Italy)

  • Salvatore Eugenio Pappalardo

    (Department of Civil, Environmental and Architectural Engineering, University of Padova, 35131 Padova, Italy)

  • Massimo De Marchi

    (Department of Civil, Environmental and Architectural Engineering, University of Padova, 35131 Padova, Italy)

Abstract

Over the last few years, soil sealing has been recognized as one of the major threats in terms of soil degradation and loss of ecosystem services. Although many efforts have been promoted to increase the awareness of safeguarding soil for stakeholders, its value as a non-renewable resource as well as soil-related services in urban ecosystems is not implemented enough in urban planning and policies. Due to the spatially explicit component and the geographical scale of soil sealing, mapping and quantifying the number of sealed surfaces is crucial. The aim of this paper was to estimate and geovisualize the soil sealed in the city of Padua (Italy) at a very detailed scale, testing the use of the Biotope Area Factor (BAF) index. Moreover, the paper aimed to simulate an alternative mitigation scenario in a specific study area of the city. Spatial analysis was performed testing the BAF index in a Geographic Information Sistem (GIS) environment and using aerial ortho-photos at very high resolution. The results show different values of the BAF index for all four neighborhoods from 0.35 to 0.69. In the mitigation scenario, the value of the BAF index was improved using a measure of green roofs. In conclusion, the paper provides an insightful case study for enriching the debate about soil sealing and gives scientific support for sustainable urban planning.

Suggested Citation

  • Francesca Peroni & Guglielmo Pristeri & Daniele Codato & Salvatore Eugenio Pappalardo & Massimo De Marchi, 2019. "Biotope Area Factor: An Ecological Urban Index to Geovisualize Soil Sealing in Padua, Italy," Sustainability, MDPI, vol. 12(1), pages 1-17, December.
  • Handle: RePEc:gam:jsusta:v:12:y:2019:i:1:p:150-:d:301279
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/1/150/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/1/150/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luca Congedo & Lorenzo Sallustio & Michele Munafò & Marco Ottaviano & Daniela Tonti & Marco Marchetti, 2016. "Copernicus high-resolution layers for land cover classification in Italy," Journal of Maps, Taylor & Francis Journals, vol. 12(5), pages 1195-1205, October.
    2. Birch, Colin P.D. & Oom, Sander P. & Beecham, Jonathan A., 2007. "Rectangular and hexagonal grids used for observation, experiment and simulation in ecology," Ecological Modelling, Elsevier, vol. 206(3), pages 347-359.
    3. Petra Stankovics & Gergely Tóth & Zoltán Tóth, 2018. "Identifying Gaps between the Legislative Tools of Soil Protection in the EU Member States for a Common European Soil Protection Legislation," Sustainability, MDPI, vol. 10(8), pages 1-17, August.
    4. Ronchi, Silvia & Salata, Stefano & Arcidiacono, Andrea & Piroli, Erika & Montanarella, Luca, 2019. "Policy instruments for soil protection among the EU member states: A comparative analysis," Land Use Policy, Elsevier, vol. 82(C), pages 763-780.
    5. Melissa Keeley, 2011. "The Green Area Ratio: an urban site sustainability metric," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 54(7), pages 937-958, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zongyao Sha & Dai Qiu & Husheng Fang & Yichun Xie & Jiangguang Tu & Xicheng Tan & Xiaolei Li & Jiangping Chen, 2022. "Assessing the Potential of Vegetation Carbon Uptake from Optimal Land Management in the Greater Guangzhou Area," Land, MDPI, vol. 11(11), pages 1-18, October.
    2. Kamila Pawłowska & Bartosz Jawecki, 2021. "The Determination of Priority Areas for the Construction of Green Roofs with Use of the Urban Area Valorisation Method," Sustainability, MDPI, vol. 13(23), pages 1-24, November.
    3. Anna Codemo & Angelica Pianegonda & Marco Ciolli & Sara Favargiotti & Rossano Albatici, 2022. "Mapping Pervious Surfaces and Canopy Cover Using High-Resolution Airborne Imagery and Digital Elevation Models to Support Urban Planning," Sustainability, MDPI, vol. 14(10), pages 1-21, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Radu Lucian Pânzaru & Daniela Firoiu & George H. Ionescu & Andi Ciobanu & Dragoș Mihai Medelete & Ramona Pîrvu, 2023. "Organic Agriculture in the Context of 2030 Agenda Implementation in European Union Countries," Sustainability, MDPI, vol. 15(13), pages 1-31, July.
    2. Stefano Salata & Elisabetta Peccol & Oscar Borsato, 2019. "A Framework to Evaluate Land Take Control Policy Efficiency in Friuli Venezia Giulia, Italy," Sustainability, MDPI, vol. 11(22), pages 1-18, November.
    3. Stefano Salata, 2021. "The Utilization of Supervised Classification Sampling for Environmental Monitoring in Turin (Italy)," Sustainability, MDPI, vol. 13(5), pages 1-20, February.
    4. Denis Maragno & Michele Dalla Fontana & Francesco Musco, 2020. "Mapping Heat Stress Vulnerability and Risk Assessment at the Neighborhood Scale to Drive Urban Adaptation Planning," Sustainability, MDPI, vol. 12(3), pages 1-16, February.
    5. Yangang Xing & Phil Jones & Iain Donnison, 2017. "Characterisation of Nature-Based Solutions for the Built Environment," Sustainability, MDPI, vol. 9(1), pages 1-20, January.
    6. Kleemann, Janina & Struve, Berenike & Spyra, Marcin, 2023. "Conflicts in urban peripheries in Europe," Land Use Policy, Elsevier, vol. 133(C).
    7. Kim, Suji & Lee, Sujin & Ko, Eunjeong & Jang, Kitae & Yeo, Jiho, 2021. "Changes in car and bus usage amid the COVID-19 pandemic: Relationship with land use and land price," Journal of Transport Geography, Elsevier, vol. 96(C).
    8. Pacheco de Castro Flores Ribeiro, Paulo & Osório de Barros de Lima e Santos, José Manuel & Prudêncio Rafael Canadas, Maria João & Contente de Vinha Novais, Ana Maria & Ribeiro Ferraria Moreira, Franci, 2021. "Explaining farming systems spatial patterns: A farm-level choice model based on socioeconomic and biophysical drivers," Agricultural Systems, Elsevier, vol. 191(C).
    9. Tommaso Orusa & Annalisa Viani & Enrico Borgogno-Mondino, 2024. "Earth Observation Data and Geospatial Deep Learning AI to Assign Contributions to European Municipalities Sen4MUN: An Empirical Application in Aosta Valley (NW Italy)," Land, MDPI, vol. 13(1), pages 1-21, January.
    10. Jue Wang & Mei-Po Kwan & Yanwei Chai, 2018. "An Innovative Context-Based Crystal-Growth Activity Space Method for Environmental Exposure Assessment: A Study Using GIS and GPS Trajectory Data Collected in Chicago," IJERPH, MDPI, vol. 15(4), pages 1-24, April.
    11. Oliveira, Renata Lúcia Magalhães de & Dablanc, Laetitia & Schorung, Matthieu, 2022. "Changes in warehouse spatial patterns and rental prices: Are they related? Exploring the case of US metropolitan areas," Journal of Transport Geography, Elsevier, vol. 104(C).
    12. Sungsoo Yoon & Youngjoo Moon & Jinah Jeong & Chan-Ryul Park & Wanmo Kang, 2021. "A Network-Based Approach for Reducing Pedestrian Exposure to PM 2.5 Induced by Road Traffic in Seoul," Land, MDPI, vol. 10(10), pages 1-14, October.
    13. repec:zbw:inwedp:662016 is not listed on IDEAS
    14. Alys Solly & Erblin Berisha & Giancarlo Cotella & Umberto Janin Rivolin, 2020. "How Sustainable Are Land Use Tools? A Europe-Wide Typological Investigation," Sustainability, MDPI, vol. 12(3), pages 1-21, February.
    15. Christopher T. Emrich & Yao Zhou & Sanam K. Aksha & Herbert E. Longenecker, 2022. "Creating a Nationwide Composite Hazard Index Using Empirically Based Threat Assessment Approaches Applied to Open Geospatial Data," Sustainability, MDPI, vol. 14(5), pages 1-25, February.
    16. Maria Fabrizia Clemente, 2022. "The Future Impacts of ESL Events in Euro-Mediterranean Coastal Cities: The Coast-RiskBySea Model to Assess the Potential Economic Damages in Naples, Marseille and Barcelona," Sustainability, MDPI, vol. 14(16), pages 1-22, August.
    17. Sui Zhang & Minghao Wang & Zhao Yang & Baolei Zhang, 2021. "A Novel Predictor for Micro-Scale COVID-19 Risk Modeling: An Empirical Study from a Spatiotemporal Perspective," IJERPH, MDPI, vol. 18(24), pages 1-16, December.
    18. Ryzhkov, Alexander & Sarzhan, Yuliya, 2020. "Market initiative and central planning: A study of the Moscow bus network," Research in Transportation Economics, Elsevier, vol. 83(C).
    19. Marchetti, Yuliya & Nguyen, Hai & Braverman, Amy & Cressie, Noel, 2018. "Spatial data compression via adaptive dispersion clustering," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 138-153.
    20. Katharina Helming & Katrin Daedlow & Bernd Hansjürgens & Thomas Koellner, 2018. "Assessment and Governance of Sustainable Soil Management," Sustainability, MDPI, vol. 10(12), pages 1-13, November.
    21. V. M. Jayasooriya & A. W. M. Ng & S. Muthukumaran & B. J. C. Perera, 2016. "Optimal Sizing of Green Infrastructure Treatment Trains for Stormwater Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5407-5420, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2019:i:1:p:150-:d:301279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.