IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i1p80-d1316707.html
   My bibliography  Save this article

Earth Observation Data and Geospatial Deep Learning AI to Assign Contributions to European Municipalities Sen4MUN: An Empirical Application in Aosta Valley (NW Italy)

Author

Listed:
  • Tommaso Orusa

    (Department of Agricultural, Forest and Food Sciences (DISAFA), GEO4Agri DISAFA Lab, Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
    IN.VA spa and Earth Observation Valle d’Aosta—eoVdA, Località L’Île-Blonde 5, 11020 Brissogne, Italy)

  • Annalisa Viani

    (Institute for Piedmont, Liguria, Aosta Valley (IZS PLV) S.C Valle d’Aosta—CeRMAS (National Reference Center for Wildlife Diseases), Località Amerique 7/G, 11020 Quart, Italy)

  • Enrico Borgogno-Mondino

    (Department of Agricultural, Forest and Food Sciences (DISAFA), GEO4Agri DISAFA Lab, Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy)

Abstract

Nowadays, European program Copernicus’ Sentinel missions have allowed the development of several application services. In this regard, to strengthen the use of free satellite data in ordinary administrative workflows, this work aims to evaluate the feasibility and prototypal development of a possible service called Sen4MUN for the distribution of contributions yearly allocated to local municipalities and scalable to all European regions. The analysis was focused on the Aosta Valley region, North West Italy. A comparison between the Ordinary Workflow (OW) and the suggested Sen4MUN approach was performed. OW is based on statistical survey and municipality declaration, while Sen4MUN is based on geospatial deep learning techniques on aerial imagery (to extract roads and buildings to get real estate units) and yearly Land Cover map components according to European EAGLE guidelines. Both methods are based on land cover components which represent the input on which the financial coefficients for assigning contributions are applied. In both approaches, buffers are applied onto urban class (LC b ). This buffer was performed according to the EEA-ISPRA soil consumption guidelines to avoid underestimating some areas that are difficult to map. In the case of Sen4MUN, this is applied to overcome Sentinel sensor limits and spectral mixing issues, while in the case of OW, this is due to limits in the survey method itself. Finally, a validation was performed assuming as truth the approach defined by law as the standard, i.e., OW, although it has limitations. MAEs involving LC b , road lengths and real estate units demonstrate the effectiveness of Sen4MUN. The developed approach suggests a contribution system based on Geomatics and Remote sensing to the public administration.

Suggested Citation

  • Tommaso Orusa & Annalisa Viani & Enrico Borgogno-Mondino, 2024. "Earth Observation Data and Geospatial Deep Learning AI to Assign Contributions to European Municipalities Sen4MUN: An Empirical Application in Aosta Valley (NW Italy)," Land, MDPI, vol. 13(1), pages 1-21, January.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:1:p:80-:d:1316707
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/1/80/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/1/80/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jeffrey S. Racine, 2012. "RStudio: A Platform‐Independent IDE for R and Sweave," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(1), pages 167-172, January.
    2. Luca Congedo & Lorenzo Sallustio & Michele Munafò & Marco Ottaviano & Daniela Tonti & Marco Marchetti, 2016. "Copernicus high-resolution layers for land cover classification in Italy," Journal of Maps, Taylor & Francis Journals, vol. 12(5), pages 1195-1205, October.
    3. Christoph Basten & Maximilian Ehrlich & Andrea Lassmann, 2017. "Income Taxes, Sorting and the Costs of Housing: Evidence from Municipal Boundaries in Switzerland," Economic Journal, Royal Economic Society, vol. 0(601), pages 653-687, May.
    4. Karen C. Seto & Robert K. Kaufmann, 2003. "Modeling the Drivers of Urban Land Use Change in the Pearl River Delta, China: Integrating Remote Sensing with Socioeconomic Data," Land Economics, University of Wisconsin Press, vol. 79(1), pages 106-121.
    5. Andrea Strollo & Daniela Smiraglia & Roberta Bruno & Francesca Assennato & Luca Congedo & Paolo De Fioravante & Chiara Giuliani & Ines Marinosci & Nicola Riitano & Michele Munafò, 2020. "Land consumption in Italy," Journal of Maps, Taylor & Francis Journals, vol. 16(1), pages 113-123, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chau, Nancy H. & Qin, Yu & Zhang, Weiwen, 2015. "Networked Leaders in the Shadow of the Market – A Chinese Experiment in Allocating Land Conversion Rights," Working Papers 250022, Cornell University, Department of Applied Economics and Management.
    2. David Hidalgo García & Julián Arco Díaz & Adelaida Martín Martín & Emilio Gómez Cobos, 2022. "Spatiotemporal Analysis of Urban Thermal Effects Caused by Heat Waves through Remote Sensing," Sustainability, MDPI, vol. 14(19), pages 1-24, September.
    3. Christian A. L. Hilber, 2019. "Immobilienpreise und Immobilienzyklen und die Rolle von Angebotsbeschränkungen [The impact of local supply constraints on house prices and price dynamics]," Zeitschrift für Immobilienökonomie (German Journal of Real Estate Research), Springer;Gesellschaft für Immobilienwirtschaftliche Forschung e. V., vol. 5(1), pages 37-65, November.
    4. Ehrlich, Maximilian V. & Hilber, Christian A.L. & Schöni, Olivier, 2018. "Institutional settings and urban sprawl: Evidence from Europe," Journal of Housing Economics, Elsevier, vol. 42(C), pages 4-18.
    5. Auriol, Emmanuelle & Biancini, Sara & Paillacar, Rodrigo, 2023. "Intellectual property rights protection and trade: An empirical analysis," World Development, Elsevier, vol. 162(C).
    6. Francesca Peroni & Guglielmo Pristeri & Daniele Codato & Salvatore Eugenio Pappalardo & Massimo De Marchi, 2019. "Biotope Area Factor: An Ecological Urban Index to Geovisualize Soil Sealing in Padua, Italy," Sustainability, MDPI, vol. 12(1), pages 1-17, December.
    7. Beatriz Talavera-Velasco & Lourdes Luceño-Moreno & Jesús Martín García & Daniel Vázquez-Estévez, 2018. "DECORE-21: Assessment of occupational stress in police. Confirmatory factor analysis of the original model," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-11, October.
    8. Jianglong Chen & Jinlong Gao & Feng Yuan, 2016. "Growth Type and Functional Trajectories: An Empirical Study of Urban Expansion in Nanjing, China," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-18, February.
    9. Grodecka, Anna & Hull, Isaiah, 2019. "The Impact of Local Taxes and Public Services on Property Values," Working Paper Series 374, Sveriges Riksbank (Central Bank of Sweden).
    10. Weiguo Liu & Karen C Seto, 2008. "Using the ART-MMAP Neural Network to Model and Predict Urban Growth: A Spatiotemporal Data Mining Approach," Environment and Planning B, , vol. 35(2), pages 296-317, April.
    11. Guangjin Tian & Zhifeng Yang & Yichun Xie, 2007. "Detecting Spatiotemporal Dynamic Landscape Patterns Using Remote Sensing and the Lacunarity Index: A Case Study of Haikou City, China," Environment and Planning B, , vol. 34(3), pages 556-569, June.
    12. Taiyang Zhong & Xianjin Huang & Lifang Ye & Steffanie Scott, 2014. "The Impacts on Illegal Farmland Conversion of Adopting Remote Sensing Technology for Land Inspection in China," Sustainability, MDPI, vol. 6(7), pages 1-26, July.
    13. D'Agata, Alessia & Alaimo, Leonardo Salvatore & Cudlín, Pavel & Salvati, Luca, 2023. "Easy come, easy go: Short-term land-use dynamics vis à vis regional economic downturns," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).
    14. Shang-Ming Zhou & Fabiola Fernandez-Gutierrez & Jonathan Kennedy & Roxanne Cooksey & Mark Atkinson & Spiros Denaxas & Stefan Siebert & William G Dixon & Terence W O’Neill & Ernest Choy & Cathie Sudlow, 2016. "Defining Disease Phenotypes in Primary Care Electronic Health Records by a Machine Learning Approach: A Case Study in Identifying Rheumatoid Arthritis," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-14, May.
    15. Andrea Molocchi, 2021. "Circular Economy and Environmental Sustainability: A Policy Coherence Analysis of Current Italian Subsidies," Sustainability, MDPI, vol. 13(15), pages 1-38, July.
    16. Michail Fragkias & Karen C Seto, 2007. "Modeling Urban Growth in Data-Sparse Environments: A New Approach," Environment and Planning B, , vol. 34(5), pages 858-883, October.
    17. Giulia Cecili & Paolo De Fioravante & Pasquale Dichicco & Luca Congedo & Marco Marchetti & Michele Munafò, 2023. "Land Cover Mapping with Convolutional Neural Networks Using Sentinel-2 Images: Case Study of Rome," Land, MDPI, vol. 12(4), pages 1-20, April.
    18. Deng, Xiangzheng & Huang, Jikun & Rozelle, Scott & Uchida, Emi, 2008. "Growth, population and industrialization, and urban land expansion of China," Journal of Urban Economics, Elsevier, vol. 63(1), pages 96-115, January.
    19. Yunfei Peng & Fangling Yang & Lingwei Zhu & Ruru Li & Chao Wu & Deng Chen, 2021. "Comparative Analysis of the Factors Influencing Land Use Change for Emerging Industry and Traditional Industry: A Case Study of Shenzhen City, China," Land, MDPI, vol. 10(6), pages 1-17, May.
    20. Marini, Michele & Caro, Dario & Thomsen, Marianne, 2023. "Investigating local policy instruments for different types of urban agriculture in four European cities: A case study analysis on the use and effectiveness of the applied policy instruments," Land Use Policy, Elsevier, vol. 131(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:1:p:80-:d:1316707. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.