IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i7p2139-d221492.html
   My bibliography  Save this article

Effect of Carbon/Nitrogen Ratio, Temperature, and Inoculum Source on Hydrogen Production from Dark Codigestion of Fruit Peels and Sewage Sludge

Author

Listed:
  • Lirio María Reyna-Gómez

    (Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Av. Pedro de Alba S/N, Ciudad Universitaria, San Nicolás de los Garza 66455, Mexico
    Facultad de Ingeniería Civil, Universidad Autónoma de Nuevo León, Departamento de Ingeniería Ambiental, Av. Universidad S/N, Ciudad Universitaria, San Nicolás de los Garza 66455, Mexico)

  • Carlos Eduardo Molina-Guerrero

    (Facultad de Ingeniería Civil, Universidad Autónoma de Nuevo León, Departamento de Ingeniería Ambiental, Av. Universidad S/N, Ciudad Universitaria, San Nicolás de los Garza 66455, Mexico
    Depto. Ingenierías Química, Electrónica y Biomédica. División de Ciencias e Ingenierías, Campus León, Universidad de Guanajuato, Loma del Bosque 103, Col. Lomas del Campestre, León 37150, Mexico)

  • Juan Manuel Alfaro

    (Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Av. Pedro de Alba S/N, Ciudad Universitaria, San Nicolás de los Garza 66455, Mexico)

  • Santiago Iván Suárez Vázquez

    (Facultad de Ingeniería Civil, Universidad Autónoma de Nuevo León, Departamento de Ingeniería Ambiental, Av. Universidad S/N, Ciudad Universitaria, San Nicolás de los Garza 66455, Mexico)

  • Armando Robledo-Olivo

    (Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro 1923, Buena Vista, Saltillo 25315, Mexico)

  • Arquímedes Cruz-López

    (Facultad de Ingeniería Civil, Universidad Autónoma de Nuevo León, Departamento de Ingeniería Ambiental, Av. Universidad S/N, Ciudad Universitaria, San Nicolás de los Garza 66455, Mexico)

Abstract

This paper studies the use of fruit peel biomass and waste sludge from municipal wastewater treatment plants in the metropolitan area of Monterrey, Mexico as an alternative way of generating renewable energy. Using a Plackett–Burman experimental design, we investigated the effects of temperature, inoculum source, and the C/N (Carbon/Nitrogen) ratio on dark fermentation (DF). The results indicate that it is possible to produce hydrogen using fruit peels codigested with sewage sludge. By adjusting the C/N ratio in response to the physicochemical characterization of the substrates, it was revealed that the quantities of carbohydrates and nitrogen were sufficient for the occurrence of the fermentation process with biogas production greater than 2221 ± 5.8 mL L −1 Reactor and hydrogen selectivity of 23% (366 ± 1 mL H 2 ·L −1 Reactor ) at the central point. The kinetic parameters (H max = 86.6 mL·L −1 , R m = 2.6 mL L −1 h −1 , and λ = 1.95 h) were calculated using the modified Gompertz model. The quantification of soluble metabolites, such as acetic acid (3600 mg L −1 ) and ethyl alcohol (3.4 ± 0.25% v / v ), confirmed the presence of acetogenesis in the generation of hydrogen.

Suggested Citation

  • Lirio María Reyna-Gómez & Carlos Eduardo Molina-Guerrero & Juan Manuel Alfaro & Santiago Iván Suárez Vázquez & Armando Robledo-Olivo & Arquímedes Cruz-López, 2019. "Effect of Carbon/Nitrogen Ratio, Temperature, and Inoculum Source on Hydrogen Production from Dark Codigestion of Fruit Peels and Sewage Sludge," Sustainability, MDPI, vol. 11(7), pages 1-13, April.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:7:p:2139-:d:221492
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/7/2139/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/7/2139/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Julius Akinbomi & Mohammad J. Taherzadeh, 2015. "Evaluation of Fermentative Hydrogen Production from Single and Mixed Fruit Wastes," Energies, MDPI, vol. 8(5), pages 1-20, May.
    2. Bo Zhang & Guoxiu Li & Pin Cheng & Tian-Chyi Jim Yeh & Mei Hong, 2016. "Landfill Risk Assessment on Groundwater Based on Vulnerability and Pollution Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1465-1480, March.
    3. Ghimire, Anish & Frunzo, Luigi & Pirozzi, Francesco & Trably, Eric & Escudie, Renaud & Lens, Piet N.L. & Esposito, Giovanni, 2015. "A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products," Applied Energy, Elsevier, vol. 144(C), pages 73-95.
    4. Giovanna Cappai & Giorgia De Gioannis & Aldo Muntoni & Daniela Spiga & Maria Rosaria Boni & Alessandra Polettini & Raffaella Pomi & Andreina Rossi, 2018. "Biohydrogen Production from Food Waste: Influence of the Inoculum-To-Substrate Ratio," Sustainability, MDPI, vol. 10(12), pages 1-14, November.
    5. Bo Zhang & Guoxiu Li & Pin Cheng & Tian-Chyi Yeh & Mei Hong, 2016. "Landfill Risk Assessment on Groundwater Based on Vulnerability and Pollution Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1465-1480, March.
    6. Ortigueira, Joana & Pinto, Tiago & Gouveia, Luísa & Moura, Patrícia, 2015. "Production and storage of biohydrogen during sequential batch fermentation of Spirogyra hydrolyzate by Clostridium butyricum," Energy, Elsevier, vol. 88(C), pages 528-536.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karim, Ahasanul & Islam, M. Amirul & Mishra, Puranjan & Yousuf, Abu & Faizal, Che Ku Mohammad & Khan, Md. Maksudur Rahman, 2021. "Technical difficulties of mixed culture driven waste biomass-based biohydrogen production: Sustainability of current pretreatment techniques and future prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Monteleone, Beatrice & Borzí, Iolanda & Bonaccorso, Brunella & Martina, Mario, 2022. "Developing stage-specific drought vulnerability curves for maize: The case study of the Po River basin," Agricultural Water Management, Elsevier, vol. 269(C).
    2. Fariha Kanwal & Angel A. J. Torriero, 2022. "Biohydrogen—A Green Fuel for Sustainable Energy Solutions," Energies, MDPI, vol. 15(20), pages 1-20, October.
    3. Vittorio Catani & Daniela Zuzolo & Libera Esposito & Stefano Albanese & Mauro Pagnozzi & Francesco Fiorillo & Benedetto Vivo & Domenico Cicchella, 2020. "A New Approach for Aquifer Vulnerability Assessment: the Case Study of Campania Plain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 819-834, January.
    4. Robert Duda & Robert Zdechlik & Jarosław Kania, 2021. "Semiquantitative Risk Assessment Method for Groundwater Source Protection Using a Process-based Interdisciplinary Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(10), pages 3373-3394, August.
    5. Monteleone, Beatrice & Borzí, Iolanda & Arosio, Marcello & Cesarini, Luigi & Bonaccorso, Brunella & Martina, Mario, 2023. "Modelling the response of wheat yield to stage-specific water stress in the Po Plain," Agricultural Water Management, Elsevier, vol. 287(C).
    6. Zhiyong Wei & Zifang Chi, 2023. "Groundwater Risk Assessment Based on DRASTIC and Special Vulnerability of Solidified/Stabilized Heavy-Metal-Contaminated Sites," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    7. Soltan, Mohamed & Elsamadony, Mohamed & Tawfik, Ahmed, 2017. "Biological hydrogen promotion via integrated fermentation of complex agro-industrial wastes," Applied Energy, Elsevier, vol. 185(P1), pages 929-938.
    8. Zheng Xiang & Xiaohong Chen & Yanqing Lian, 2016. "Quantifying the Vulnerability of Surface Water Environment in Humid Areas Base on DEA Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5101-5112, November.
    9. Jiraprasertwong, Achiraya & Maitriwong, Kiatchai & Chavadej, Sumaeth, 2019. "Production of biogas from cassava wastewater using a three-stage upflow anaerobic sludge blanket (UASB) reactor," Renewable Energy, Elsevier, vol. 130(C), pages 191-205.
    10. Yang, Guang & Wang, Jianlong, 2018. "Various additives for improving dark fermentative hydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 130-146.
    11. Vira Hovorukha & Olesia Havryliuk & Galina Gladka & Oleksandr Tashyrev & Antonina Kalinichenko & Monika Sporek & Agnieszka Dołhańczuk-Śródka, 2021. "Hydrogen Dark Fermentation for Degradation of Solid and Liquid Food Waste," Energies, MDPI, vol. 14(7), pages 1-12, March.
    12. Lopez-Hidalgo, Angel M. & Alvarado-Cuevas, Zazil D. & De Leon-Rodriguez, Antonio, 2018. "Biohydrogen production from mixtures of agro-industrial wastes: Chemometric analysis, optimization and scaling up," Energy, Elsevier, vol. 159(C), pages 32-41.
    13. Łukajtis, Rafał & Hołowacz, Iwona & Kucharska, Karolina & Glinka, Marta & Rybarczyk, Piotr & Przyjazny, Andrzej & Kamiński, Marian, 2018. "Hydrogen production from biomass using dark fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 665-694.
    14. Sun, Chihe & Xia, Ao & Liao, Qiang & Fu, Qian & Huang, Yun & Zhu, Xun & Wei, Pengfei & Lin, Richen & Murphy, Jerry D., 2018. "Improving production of volatile fatty acids and hydrogen from microalgae and rice residue: Effects of physicochemical characteristics and mix ratios," Applied Energy, Elsevier, vol. 230(C), pages 1082-1092.
    15. Bakonyi, Péter & Buitrón, Germán & Valdez-Vazquez, Idania & Nemestóthy, Nándor & Bélafi-Bakó, Katalin, 2017. "A novel gas separation integrated membrane bioreactor to evaluate the impact of self-generated biogas recycling on continuous hydrogen fermentation," Applied Energy, Elsevier, vol. 190(C), pages 813-823.
    16. Trad, Zaineb & Fontaine, Jean-Pierre & Larroche, Christian & Vial, Christophe, 2016. "Multiscale mixing analysis and modeling of biohydrogen production by dark fermentation," Renewable Energy, Elsevier, vol. 98(C), pages 264-282.
    17. Chen, Yi-di & Li, Suping & Ho, Shih-Hsin & Wang, Chengyu & Lin, Yen-Chang & Nagarajan, Dillirani & Chang, Jo-Shu & Ren, Nan-qi, 2018. "Integration of sludge digestion and microalgae cultivation for enhancing bioenergy and biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 76-90.
    18. Lavagnolo, Maria Cristina & Girotto, Francesca & Rafieenia, Razieh & Danieli, Luciano & Alibardi, Luca, 2018. "Two-stage anaerobic digestion of the organic fraction of municipal solid waste – Effects of process conditions during batch tests," Renewable Energy, Elsevier, vol. 126(C), pages 14-20.
    19. Liu, Xinxin & Zhao, Junhui & He, Chao & Liu, Liang & Li, Gang & Pan, Xiaohui & Xu, Guizhuan & Lu, Chaoyang & Zhang, Quanguo & Jiao, Youzhou, 2023. "A new approach for evaluating photosynthetic bio-hydrogen production: The dissipation rate method," Energy, Elsevier, vol. 284(C).
    20. Singh, Harshita & Varanasi, Jhansi L. & Banerjee, Srijoni & Das, Debabrata, 2019. "Production of carbohydrate enrich microalgal biomass as a bioenergy feedstock," Energy, Elsevier, vol. 188(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:7:p:2139-:d:221492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.