IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i5p1307-d210330.html
   My bibliography  Save this article

Selection of Sustainable Short-Span Bridge Design in Brazil

Author

Listed:
  • Moacir Kripka

    (Civil and Environmental Engineering Graduate Program (PPGEng), University of Passo Fundo, Passo Fundo 99052-900, Brazil)

  • Victor Yepes

    (Institute of Concrete Science and Technology (ICITECH), Universitat Politècnica de València, 46022 Valencia, Spain)

  • Cleovir José Milani

    (Civil and Environmental Engineering Graduate Program (PPGEng), University of Passo Fundo, Passo Fundo 99052-900, Brazil)

Abstract

Owing to the elevated cost of bridges, especially when compared to the cost of roads, their rational design and material selection are fundamental properties to consider when aiming to reduce the environmental impacts and lengthen the lifespan of the bridge. Especially in developing countries, the construction of new bridges (mainly short spanned) is still a necessity, and it is important that these new structures are designed according to all the sustainability parameters, instead of being based only on the construction cost. Thus, the present work aims to study short-span bridges by integrating environmental assessments into the decision-making process. To achieve this goal, three short-span bridge designs, proposed by public organizations in Brazil, are evaluated: Precast concrete bridge, mixed concrete/steel bridge, and timber bridge. In order to allow comparison, the same location and span are considered. The structures are evaluated considering the following quantitative aspects: Cost of construction, assembly and material transportation, lifespan, and environmental impact (measured by the global warming potential, GWP). In addition, some more subjective factors are considered, such as the architecture (layout and appearance) and the user’s sensation of security. The selection is made by the adoption of two multi-criteria decision-making methods (analytic hierarchy process or AHP and Vikor). The results obtained with both methods indicate the mixed concrete/steel bridge as the most adequate alternative. Some additional analysis is performed in order to evaluate the influence of the qualitative aspects, as well as to study the importance of the variations in the costs on the results.

Suggested Citation

  • Moacir Kripka & Victor Yepes & Cleovir José Milani, 2019. "Selection of Sustainable Short-Span Bridge Design in Brazil," Sustainability, MDPI, vol. 11(5), pages 1-12, March.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:5:p:1307-:d:210330
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/5/1307/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/5/1307/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vicent Penadés-Plà & Tatiana García-Segura & José V. Martí & Víctor Yepes, 2018. "An Optimization-LCA of a Prestressed Concrete Precast Bridge," Sustainability, MDPI, vol. 10(3), pages 1-17, March.
    2. Vicent Penadés-Plà & Tatiana García-Segura & José V. Martí & Víctor Yepes, 2016. "A Review of Multi-Criteria Decision-Making Methods Applied to the Sustainable Bridge Design," Sustainability, MDPI, vol. 8(12), pages 1-21, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zenonas Turskis & Kęstutis Urbonas & Danutė Sližytė & Jurgis Medzvieckas & Rimantas Mackevičius & Vaidotas Šapalas, 2020. "A Novel Integrated Approach to Solve Industrial Ground Floor Design Problems," Sustainability, MDPI, vol. 12(12), pages 1-13, June.
    2. Pollyanna Fernandes Bianchi & Víctor Yepes & Paulo Cezar Vitorio & Moacir Kripka, 2021. "Study of Alternatives for the Design of Sustainable Low-Income Housing in Brazil," Sustainability, MDPI, vol. 13(9), pages 1-15, April.
    3. Cleovir José Milani & Víctor Yepes & Moacir Kripka, 2020. "Proposal of Sustainability Indicators for the Design of Small-Span Bridges," IJERPH, MDPI, vol. 17(12), pages 1-23, June.
    4. Vicent Penadés-Plà & David Martínez-Muñoz & Tatiana García-Segura & Ignacio J. Navarro & Víctor Yepes, 2020. "Environmental and Social Impact Assessment of Optimized Post-Tensioned Concrete Road Bridges," Sustainability, MDPI, vol. 12(10), pages 1-18, May.
    5. Xiaoming Wang & Xudong Wang & You Dong & Chengshu Wang, 2020. "A Novel Construction Technology for Self-Anchored Suspension Bridge Considering Safety and Sustainability Performance," Sustainability, MDPI, vol. 12(7), pages 1-23, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anastasiades, K. & Blom, J. & Buyle, M. & Audenaert, A., 2020. "Translating the circular economy to bridge construction: Lessons learnt from a critical literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    2. Vicent Penadés-Plà & David Martínez-Muñoz & Tatiana García-Segura & Ignacio J. Navarro & Víctor Yepes, 2020. "Environmental and Social Impact Assessment of Optimized Post-Tensioned Concrete Road Bridges," Sustainability, MDPI, vol. 12(10), pages 1-18, May.
    3. Laura Montalbán-Domingo & Madeleine Aguilar-Morocho & Tatiana García-Segura & Eugenio Pellicer, 2020. "Study of Social and Environmental Needs for the Selection of Sustainable Criteria in the Procurement of Public Works," Sustainability, MDPI, vol. 12(18), pages 1-21, September.
    4. Ahmad Jrade & Farnaz Jalaei & Jieying Jane Zhang & Saeed Jalilzadeh Eirdmousa & Farzad Jalaei, 2023. "Potential Integration of Bridge Information Modeling and Life Cycle Assessment/Life Cycle Costing Tools for Infrastructure Projects within Construction 4.0: A Review," Sustainability, MDPI, vol. 15(20), pages 1-25, October.
    5. Mladen Krstić & Giulio Paolo Agnusdei & Snežana Tadić & Milovan Kovač & Pier Paolo Miglietta, 2023. "A Novel Axial-Distance-Based Aggregated Measurement (ADAM) Method for the Evaluation of Agri-Food Circular-Economy-Based Business Models," Mathematics, MDPI, vol. 11(6), pages 1-27, March.
    6. Maryam Kiani Sadr & Roghayeh Parchianloo & Sedighe Abdollahi & Hamta Golkarian, 2023. "Application of weighted aggregated sum product assessment and geographical information system for urban development zoning," Asia-Pacific Journal of Regional Science, Springer, vol. 7(3), pages 845-863, September.
    7. Edmundas Kazimieras Zavadskas & Jurgita Antucheviciene & Tatjana Vilutiene & Hojjat Adeli, 2017. "Sustainable Decision-Making in Civil Engineering, Construction and Building Technology," Sustainability, MDPI, vol. 10(1), pages 1-21, December.
    8. Vicent Penadés-Plà & José V. Martí & Tatiana García-Segura & Víctor Yepes, 2017. "Life-Cycle Assessment: A Comparison between Two Optimal Post-Tensioned Concrete Box-Girder Road Bridges," Sustainability, MDPI, vol. 9(10), pages 1-21, October.
    9. Vicent Penadés-Plà & Tatiana García-Segura & José V. Martí & Víctor Yepes, 2018. "An Optimization-LCA of a Prestressed Concrete Precast Bridge," Sustainability, MDPI, vol. 10(3), pages 1-17, March.
    10. Kostas Anastasiades & Thijs Lambrechts & Jaan Mennes & Amaryllis Audenaert & Johan Blom, 2022. "Formalising the R of Reduce in a Circular Economy Oriented Design Methodology for Pedestrian and Cycling Bridges," J, MDPI, vol. 5(1), pages 1-17, January.
    11. Edmundas Kazimieras Zavadskas & Jonas Šaparauskas & Jurgita Antucheviciene, 2018. "Sustainability in Construction Engineering," Sustainability, MDPI, vol. 10(7), pages 1-7, June.
    12. K. Graff & C. Lissak & Y. Thiery & O. Maquaire & S. Costa & B. Laignel, 2019. "Analysis and quantification of potential consequences in multirisk coastal context at different spatial scales (Normandy, France)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 637-664, November.
    13. Jan Pešta & Tereza Pavlů & Kristina Fořtová & Vladimír Kočí, 2020. "Sustainable Masonry Made from Recycled Aggregates: LCA Case Study," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    14. Yekani Motlagh, Elgar & Hajjarian, Marzieh & Hossein Zadeh, Omid & Alijanpour, Ahmad, 2020. "The difference of expert opinion on the forest-based ecotourism development in developed countries and Iran," Land Use Policy, Elsevier, vol. 94(C).
    15. Antonio J. Sánchez-Garrido & Ignacio J. Navarro & José García & Víctor Yepes, 2022. "An Adaptive ANP & ELECTRE IS-Based MCDM Model Using Quantitative Variables," Mathematics, MDPI, vol. 10(12), pages 1-24, June.
    16. Dongmei Jing & Mohsen Imeni & Seyyed Ahmad Edalatpanah & Alhanouf Alburaikan & Hamiden Abd El-Wahed Khalifa, 2023. "Optimal Selection of Stock Portfolios Using Multi-Criteria Decision-Making Methods," Mathematics, MDPI, vol. 11(2), pages 1-21, January.
    17. Ignacio J. Navarro & Víctor Yepes & José V. Martí, 2018. "Life Cycle Cost Assessment of Preventive Strategies Applied to Prestressed Concrete Bridges Exposed to Chlorides," Sustainability, MDPI, vol. 10(3), pages 1-16, March.
    18. Numa Bertola & Célia Küpfer & Edgar Kälin & Eugen Brühwiler, 2021. "Assessment of the Environmental Impacts of Bridge Designs Involving UHPFRC," Sustainability, MDPI, vol. 13(22), pages 1-19, November.
    19. Hong Xue & Shoujian Zhang & Yikun Su & Zezhou Wu, 2018. "Capital Cost Optimization for Prefabrication: A Factor Analysis Evaluation Model," Sustainability, MDPI, vol. 10(1), pages 1-22, January.
    20. Prin Boonkanit & Kridchai Suthiluck, 2023. "Developing a Decision-Making Support System for a Smart Construction and Demolition Waste Transition to a Circular Economy," Sustainability, MDPI, vol. 15(12), pages 1-27, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:5:p:1307-:d:210330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.