IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v99y2019i2d10.1007_s11069-019-03763-5.html
   My bibliography  Save this article

Analysis and quantification of potential consequences in multirisk coastal context at different spatial scales (Normandy, France)

Author

Listed:
  • K. Graff

    (CNRS, LETG-Caen
    CNRS, M2C-Rouen)

  • C. Lissak

    (CNRS, LETG-Caen)

  • Y. Thiery

    (BRGM (French Geological Survey) Risk and Prevention Division)

  • O. Maquaire

    (CNRS, LETG-Caen)

  • S. Costa

    (CNRS, LETG-Caen)

  • B. Laignel

    (CNRS, M2C-Rouen)

Abstract

Coastal environment with high interaction between nature and societies is subject to multi-hazard interaction such as landslides, flood or cliff retreat. These territories are characterized by numerous elements at risk located in valley bottoms, front sea or at the outlets of small dry watershed. The aim is to quantify the potential consequences of EaR by integrating multiple hazards exposure at various scale analyses. To quantify the element at risk, three steps have been required. First, an initial rank has been attributed to each class of element at risk at three different scales analysis. Second, the potential consequences are weighted according to environmental dimension. Third, the consequences are combined with a linear combination of criteria in GIS environment. At medium-scale analysis, element at risk highlighted is built-up areas, national road, railway, lifeline and urban centers. At large-scale analysis, consequences concern any kind of house, apartment and complex located on multiple exposure areas. At local scale, consequences concern buildings located on multiple exposure areas with one floor in mixed materials and built after 1980. Thus, this method proposes an approach with multiple scales analysis and by integrating multiple exposure areas to quantify potential consequences. With the environmental dimension in element at risk analysis, it is an intermediate step to traditional risk analysis and, more specifically multirisk analysis without considering in this case the spatial and temporal dimension of hazards.

Suggested Citation

  • K. Graff & C. Lissak & Y. Thiery & O. Maquaire & S. Costa & B. Laignel, 2019. "Analysis and quantification of potential consequences in multirisk coastal context at different spatial scales (Normandy, France)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 637-664, November.
  • Handle: RePEc:spr:nathaz:v:99:y:2019:i:2:d:10.1007_s11069-019-03763-5
    DOI: 10.1007/s11069-019-03763-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-019-03763-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-019-03763-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Carpignano & E. Golia & C. Di Mauro & S. Bouchon & J-P. Nordvik, 2009. "A methodological approach for the definition of multi-risk maps at regional level: first application," Journal of Risk Research, Taylor & Francis Journals, vol. 12(3-4), pages 513-534, June.
    2. Cooke, Roger M. & ElSaadany, Susie & Huang, Xinzheng, 2008. "On the performance of social network and likelihood-based expert weighting schemes," Reliability Engineering and System Safety, Elsevier, vol. 93(5), pages 745-756.
    3. repec:idb:brikps:publication-detail,7101.html?id=68568 is not listed on IDEAS
    4. Reinhold Totschnig & Walter Sedlacek & Sven Fuchs, 2011. "A quantitative vulnerability function for fluvial sediment transport," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(2), pages 681-703, August.
    5. Stephanie Chang & Jackie Yip & Shona Zijll de Jong & Rebecca Chaster & Ashley Lowcock, 2015. "Using vulnerability indicators to develop resilience networks: a similarity approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1827-1841, September.
    6. Mordechai Haklay, 2010. "How Good is Volunteered Geographical Information? A Comparative Study of OpenStreetMap and Ordnance Survey Datasets," Environment and Planning B, , vol. 37(4), pages 682-703, August.
    7. Warner Marzocchi & Alexander Garcia-Aristizabal & Paolo Gasparini & Maria Mastellone & Angela Di Ruocco, 2012. "Basic principles of multi-risk assessment: a case study in Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 62(2), pages 551-573, June.
    8. Vicent Penadés-Plà & Tatiana García-Segura & José V. Martí & Víctor Yepes, 2016. "A Review of Multi-Criteria Decision-Making Methods Applied to the Sustainable Bridge Design," Sustainability, MDPI, vol. 8(12), pages 1-21, December.
    9. Zoran Vojinovic & Michael Hammond & Daria Golub & Sianee Hirunsalee & Sutat Weesakul & Vorawit Meesuk & Neiler Medina & Arlex Sanchez & Sisira Kumara & Michael Abbott, 2016. "Holistic approach to flood risk assessment in areas with cultural heritage: a practical application in Ayutthaya, Thailand," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 589-616, March.
    10. Sven Fuchs & Jörn Birkmann & Thomas Glade, 2012. "Vulnerability assessment in natural hazard and risk analysis: current approaches and future challenges," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(3), pages 1969-1975, December.
    11. Sebastian Scheuer & Dagmar Haase & Volker Meyer, 2011. "Exploring multicriteria flood vulnerability by integrating economic, social and ecological dimensions of flood risk and coping capacity: from a starting point view towards an end point view of vulnera," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(2), pages 731-751, August.
    12. Saaty, Thomas L., 2006. "Rank from comparisons and from ratings in the analytic hierarchy/network processes," European Journal of Operational Research, Elsevier, vol. 168(2), pages 557-570, January.
    13. Chengguang Lai & Xiaohong Chen & Xiaoyu Chen & Zhaoli Wang & Xushu Wu & Shiwei Zhao, 2015. "A fuzzy comprehensive evaluation model for flood risk based on the combination weight of game theory," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1243-1259, June.
    14. Olga Petrucci & Giovanni Gullà, 2010. "A simplified method for assessing landslide damage indices," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 52(3), pages 539-560, March.
    15. Maxx Dilley & Robert S. Chen & Uwe Deichmann & Arthur L. Lerner-Lam & Margaret Arnold, 2005. "Natural Disaster Hotspots: A Global Risk Analysis," World Bank Publications - Books, The World Bank Group, number 7376, December.
    16. Serkan Gumus & Gokhan Egilmez & Murat Kucukvar & Yong Shin Park, 2016. "Integrating expert weighting and multi-criteria decision making into eco-efficiency analysis: the case of US manufacturing," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(4), pages 616-628, April.
    17. Zoran Vojinovic & Michael Hammond & Daria Golub & Sianee Hirunsalee & Sutat Weesakul & Vorawit Meesuk & Neiler Medina & Arlex Sanchez & Sisira Kumara & Michael Abbott, 2016. "Holistic approach to flood risk assessment in areas with cultural heritage: a practical application in Ayutthaya, Thailand," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 589-616, March.
    18. Eun Joo Yoon & Dong Kun Lee & Ho Gul Kim & Hae Ryung Kim & Eunah Jung & Heeyeun Yoon, 2017. "Multi-Objective Land-Use Allocation Considering Landslide Risk under Climate Change: Case Study in Pyeongchang-gun, Korea," Sustainability, MDPI, vol. 9(12), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seong Yun Cho & Heejun Chang, 2017. "Recent research approaches to urban flood vulnerability, 2006–2016," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 633-649, August.
    2. Pilar Baquedano Julià & Tiago Miguel Ferreira, 2021. "From single- to multi-hazard vulnerability and risk in Historic Urban Areas: a literature review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 93-128, August.
    3. Melanie Kappes & Margreth Keiler & Kirsten Elverfeldt & Thomas Glade, 2012. "Challenges of analyzing multi-hazard risk: a review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1925-1958, November.
    4. Baoyin Liu & Yim Ling Siu & Gordon Mitchell & Wei Xu, 2016. "The danger of mapping risk from multiple natural hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 139-153, May.
    5. Christopher T. Emrich & Yao Zhou & Sanam K. Aksha & Herbert E. Longenecker, 2022. "Creating a Nationwide Composite Hazard Index Using Empirically Based Threat Assessment Approaches Applied to Open Geospatial Data," Sustainability, MDPI, vol. 14(5), pages 1-25, February.
    6. Hong Lv & Xinjian Guan & Yu Meng, 2020. "Comprehensive evaluation of urban flood-bearing risks based on combined compound fuzzy matter-element and entropy weight model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1823-1841, September.
    7. Massimiliano Pittore & Marc Wieland & Kevin Fleming, 2017. "Perspectives on global dynamic exposure modelling for geo-risk assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(1), pages 7-30, March.
    8. Yijun Shi & Guofang Zhai & Shutian Zhou & Yuwen Lu & Wei Chen & Jinyang Deng, 2019. "How Can Cities Respond to Flood Disaster Risks under Multi-Scenario Simulation? A Case Study of Xiamen, China," IJERPH, MDPI, vol. 16(4), pages 1-18, February.
    9. Alessandra Gandini & Leire Garmendia & Rosa San Mateos, 2017. "Towards sustainable historic cities: mitigation climate change risks," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 4(3), pages 319-327, March.
    10. Adriana Galderisi & Giada Limongi, 2021. "A Comprehensive Assessment of Exposure and Vulnerabilities in Multi-Hazard Urban Environments: A Key Tool for Risk-Informed Planning Strategies," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    11. Borowska-Stefańska, Marta & Kobojek, Sławomir & Kowalski, Michał & Lewicki, Marek & Tomalski, Przemysław & Wiśniewski, Szymon, 2021. "Changes in the spatial development of flood hazard areas in Poland between 1990 and 2018 in the light of legal conditions," Land Use Policy, Elsevier, vol. 102(C).
    12. Neiler Medina & Yared Abayneh Abebe & Arlex Sanchez & Zoran Vojinovic, 2020. "Assessing Socioeconomic Vulnerability after a Hurricane: A Combined Use of an Index-Based approach and Principal Components Analysis," Sustainability, MDPI, vol. 12(4), pages 1-31, February.
    13. María Bermúdez & Andreas Paul Zischg, 2018. "Sensitivity of flood loss estimates to building representation and flow depth attribution methods in micro-scale flood modelling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1633-1648, July.
    14. Yadong Zhang & Zongkun Li & Jianyou Wang & Wei Ge & Xinyan Guo & Te Wang, 2023. "Influence of soil infiltration and geomorphic change on main parameters of dam-break floods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(3), pages 2223-2236, February.
    15. Eoin O’Neill & Michael Brennan & Finbarr Brereton & Harutyun Shahumyan, 2015. "Exploring a spatial statistical approach to quantify flood risk perception using cognitive maps," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1573-1601, April.
    16. M. Budimir & P. Atkinson & H. Lewis, 2014. "Earthquake-and-landslide events are associated with more fatalities than earthquakes alone," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 895-914, June.
    17. Jin Su & Mo Wang & Mohd Adib Mohammad Razi & Norlida Mohd Dom & Noralfishah Sulaiman & Lai-Wai Tan, 2023. "A Bibliometric Review of Nature-Based Solutions on Urban Stormwater Management," Sustainability, MDPI, vol. 15(9), pages 1-23, April.
    18. Stefan Kienberger & Thomas Blaschke & Rukhe Zaidi, 2013. "A framework for spatio-temporal scales and concepts from different disciplines: the ‘vulnerability cube’," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(3), pages 1343-1369, September.
    19. Laura Turconi & Francesco Faccini & Alessandra Marchese & Guido Paliaga & Marco Casazza & Zoran Vojinovic & Fabio Luino, 2020. "Implementation of Nature-Based Solutions for Hydro-Meteorological Risk Reduction in Small Mediterranean Catchments: The Case of Portofino Natural Regional Park, Italy," Sustainability, MDPI, vol. 12(3), pages 1-22, February.
    20. Valentina Gallina & Silvia Torresan & Alex Zabeo & Andrea Critto & Thomas Glade & Antonio Marcomini, 2020. "A Multi-Risk Methodology for the Assessment of Climate Change Impacts in Coastal Zones," Sustainability, MDPI, vol. 12(9), pages 1-28, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:99:y:2019:i:2:d:10.1007_s11069-019-03763-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.