IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v119y2023i2d10.1007_s11069-021-05125-6.html
   My bibliography  Save this article

Multi-risk assessment in a historical city

Author

Listed:
  • C. Arrighi

    (Università degli Studi di Firenze)

  • M. Tanganelli

    (Università degli Studi di Firenze)

  • M. T. Cristofaro

    (Università degli Studi di Firenze)

  • V. Cardinali

    (Università degli Studi di Firenze)

  • A. Marra

    (Università degli Studi di Firenze)

  • F. Castelli

    (Università degli Studi di Firenze)

  • M. Stefano

    (Università degli Studi di Firenze)

Abstract

Natural hazards pose a significant threat to historical cities which have an authentic and universal value for mankind. This study aims at codifying a multi-risk workflow for seismic and flood hazards, for site-scale applications in historical cities, which provides the Average Annual Loss for buildings within a coherent multi-exposure and multi-vulnerability framework. The proposed methodology includes a multi-risk correlation and joint probability analysis to identify the role of urban development in re-shaping risk components in historical contexts. The workflow is unified by exposure modelling which adopts the same assumptions and parameters. Seismic vulnerability is modelled through an empirical approach by assigning to each building a vulnerability value depending on the European Macroseismic Scale (EMS-98) and modifiers available in literature. Flood vulnerability is modelled by means of stage-damage curves developed for the study area and validated against ex-post damage claims. The method is applied to the city centre of Florence (Italy) listed as UNESCO World Heritage site since 1982. Direct multi-hazard, multi-vulnerability losses are modelled for four probabilistic scenarios. A multi-risk of 3.15 M€/year is estimated for the current situation. In case of adoption of local mitigation measures like floodproofing of basements and installation of steel tie rods, multi-risk reduces to 1.55 M€/yr. The analysis of multi-risk correlation and joint probability distribution shows that the historical evolution of the city centre, from the roman castrum followed by rebuilding in the Middle Ages, the late XIX century and the post WWII, has significantly affected multi-risk in the area. Three identified portions of the study area with a different multi-risk spatial probability distribution highlight that the urban development of the historical city influenced the flood hazard and the seismic vulnerability. The presented multi-risk workflow could be applied to other historical cities and further extended to other natural hazards.

Suggested Citation

  • C. Arrighi & M. Tanganelli & M. T. Cristofaro & V. Cardinali & A. Marra & F. Castelli & M. Stefano, 2023. "Multi-risk assessment in a historical city," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(2), pages 1041-1072, November.
  • Handle: RePEc:spr:nathaz:v:119:y:2023:i:2:d:10.1007_s11069-021-05125-6
    DOI: 10.1007/s11069-021-05125-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-05125-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-05125-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pilar Baquedano Julià & Tiago Miguel Ferreira, 2021. "From single- to multi-hazard vulnerability and risk in Historic Urban Areas: a literature review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 93-128, August.
    2. Jochen Schmidt & Iain Matcham & Stefan Reese & Andrew King & Rob Bell & Roddy Henderson & Graeme Smart & Jim Cousins & Warwick Smith & Dave Heron, 2011. "Quantitative multi-risk analysis for natural hazards: a framework for multi-risk modelling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(3), pages 1169-1192, September.
    3. A. Carpignano & E. Golia & C. Di Mauro & S. Bouchon & J-P. Nordvik, 2009. "A methodological approach for the definition of multi-risk maps at regional level: first application," Journal of Risk Research, Taylor & Francis Journals, vol. 12(3-4), pages 513-534, June.
    4. Sandra Fatorić & Erin Seekamp, 2017. "Securing the Future of Cultural Heritage by Identifying Barriers to and Strategizing Solutions for Preservation under Changing Climate Conditions," Sustainability, MDPI, vol. 9(11), pages 1-20, November.
    5. Zoran Vojinovic & Michael Hammond & Daria Golub & Sianee Hirunsalee & Sutat Weesakul & Vorawit Meesuk & Neiler Medina & Arlex Sanchez & Sisira Kumara & Michael Abbott, 2016. "Holistic approach to flood risk assessment in areas with cultural heritage: a practical application in Ayutthaya, Thailand," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 589-616, March.
    6. Anna Porębska & Izabela Godyń & Krzysztof Radzicki & Elżbieta Nachlik & Paola Rizzi, 2019. "Built Heritage, Sustainable Development, and Natural Hazards: Flood Protection and UNESCO World Heritage Site Protection Strategies in Krakow, Poland," Sustainability, MDPI, vol. 11(18), pages 1-26, September.
    7. E. E. Koks & J. Rozenberg & C. Zorn & M. Tariverdi & M. Vousdoukas & S. A. Fraser & J. W. Hall & S. Hallegatte, 2019. "A global multi-hazard risk analysis of road and railway infrastructure assets," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    8. Liborio Cavaleri & Fabio Trapani & Marco Filippo Ferrotto, 2017. "A new hybrid procedure for the definition of seismic vulnerability in Mediterranean cross-border urban areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 517-541, April.
    9. Fabiana Navia Miranda & Tiago Miguel Ferreira, 2019. "A simplified approach for flood vulnerability assessment of historic sites," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(2), pages 713-730, March.
    10. Zoran Vojinovic & Michael Hammond & Daria Golub & Sianee Hirunsalee & Sutat Weesakul & Vorawit Meesuk & Neiler Medina & Arlex Sanchez & Sisira Kumara & Michael Abbott, 2016. "Holistic approach to flood risk assessment in areas with cultural heritage: a practical application in Ayutthaya, Thailand," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 589-616, March.
    11. Naveed Ahmad & Qaisar Ali & Helen Crowley & Rui Pinho, 2014. "Earthquake loss estimation of residential buildings in Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1889-1955, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neiler Medina & Yared Abayneh Abebe & Arlex Sanchez & Zoran Vojinovic, 2020. "Assessing Socioeconomic Vulnerability after a Hurricane: A Combined Use of an Index-Based approach and Principal Components Analysis," Sustainability, MDPI, vol. 12(4), pages 1-31, February.
    2. Yadong Zhang & Zongkun Li & Jianyou Wang & Wei Ge & Xinyan Guo & Te Wang, 2023. "Influence of soil infiltration and geomorphic change on main parameters of dam-break floods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(3), pages 2223-2236, February.
    3. Pilar Baquedano Julià & Tiago Miguel Ferreira, 2021. "From single- to multi-hazard vulnerability and risk in Historic Urban Areas: a literature review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 93-128, August.
    4. K. Graff & C. Lissak & Y. Thiery & O. Maquaire & S. Costa & B. Laignel, 2019. "Analysis and quantification of potential consequences in multirisk coastal context at different spatial scales (Normandy, France)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 637-664, November.
    5. Seong Yun Cho & Heejun Chang, 2017. "Recent research approaches to urban flood vulnerability, 2006–2016," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 633-649, August.
    6. Alessandra Gandini & Leire Garmendia & Rosa San Mateos, 2017. "Towards sustainable historic cities: mitigation climate change risks," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 4(3), pages 319-327, March.
    7. Shanzhong Qi & Shufen Cao & Shunli Hu & Qian Liu, 2024. "Bibliometric analysis on urban flood and waterlogging disasters during the period of 1998—2022," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(14), pages 12595-12612, November.
    8. Adriana Galderisi & Giada Limongi, 2021. "A Comprehensive Assessment of Exposure and Vulnerabilities in Multi-Hazard Urban Environments: A Key Tool for Risk-Informed Planning Strategies," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    9. Borowska-Stefańska, Marta & Kobojek, Sławomir & Kowalski, Michał & Lewicki, Marek & Tomalski, Przemysław & Wiśniewski, Szymon, 2021. "Changes in the spatial development of flood hazard areas in Poland between 1990 and 2018 in the light of legal conditions," Land Use Policy, Elsevier, vol. 102(C).
    10. Ana Momčilović Petronijević & Predrag Petronijević, 2022. "Floods and Their Impact on Cultural Heritage—A Case Study of Southern and Eastern Serbia," Sustainability, MDPI, vol. 14(22), pages 1-25, November.
    11. Jin Su & Mo Wang & Mohd Adib Mohammad Razi & Norlida Mohd Dom & Noralfishah Sulaiman & Lai-Wai Tan, 2023. "A Bibliometric Review of Nature-Based Solutions on Urban Stormwater Management," Sustainability, MDPI, vol. 15(9), pages 1-23, April.
    12. Laura Turconi & Francesco Faccini & Alessandra Marchese & Guido Paliaga & Marco Casazza & Zoran Vojinovic & Fabio Luino, 2020. "Implementation of Nature-Based Solutions for Hydro-Meteorological Risk Reduction in Small Mediterranean Catchments: The Case of Portofino Natural Regional Park, Italy," Sustainability, MDPI, vol. 12(3), pages 1-22, February.
    13. Cheng, Yao & Elsayed, E.A. & Chen, Xi, 2021. "Random Multi Hazard Resilience Modeling of Engineered Systems and Critical Infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    14. H. Zaifoglu & A. M. Yanmaz & B. Akintug, 2019. "Developing flood mitigation measures for the northern part of Nicosia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(2), pages 535-557, September.
    15. Melanie Kappes & Margreth Keiler & Kirsten Elverfeldt & Thomas Glade, 2012. "Challenges of analyzing multi-hazard risk: a review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1925-1958, November.
    16. Arnaud Mignan & Stefan Wiemer & Domenico Giardini, 2014. "The quantification of low-probability–high-consequences events: part I. A generic multi-risk approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1999-2022, September.
    17. Sandra Fatorić & Erin Seekamp, 2017. "Securing the Future of Cultural Heritage by Identifying Barriers to and Strategizing Solutions for Preservation under Changing Climate Conditions," Sustainability, MDPI, vol. 9(11), pages 1-20, November.
    18. Anna Porębska & Izabela Godyń & Krzysztof Radzicki & Elżbieta Nachlik & Paola Rizzi, 2019. "Built Heritage, Sustainable Development, and Natural Hazards: Flood Protection and UNESCO World Heritage Site Protection Strategies in Krakow, Poland," Sustainability, MDPI, vol. 11(18), pages 1-26, September.
    19. Baoyin Liu & Yim Ling Siu & Gordon Mitchell & Wei Xu, 2016. "The danger of mapping risk from multiple natural hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 139-153, May.
    20. Sandra Fatorić & Robbert Biesbroek, 2020. "Adapting cultural heritage to climate change impacts in the Netherlands: barriers, interdependencies, and strategies for overcoming them," Climatic Change, Springer, vol. 162(2), pages 301-320, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:119:y:2023:i:2:d:10.1007_s11069-021-05125-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.