IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v103y2020i2d10.1007_s11069-020-04056-y.html
   My bibliography  Save this article

Comprehensive evaluation of urban flood-bearing risks based on combined compound fuzzy matter-element and entropy weight model

Author

Listed:
  • Hong Lv

    (Zhengzhou University)

  • Xinjian Guan

    (Zhengzhou University)

  • Yu Meng

    (Zhengzhou University)

Abstract

The extreme precipitation events caused by climate change and the rapid development of urbanization have brought hidden flood risks to the cities. This paper comprehensively considered two major factors of vulnerability of urban flood-bearing and disaster prevention and mitigation (DPAM) capacity and built a comprehensive evaluation index system for urban flood-bearing risks. Secondly, a combined model consisted of composite fuzzy matter-element and entropy weight model was constructed to calculate the comprehensive risk indicator. Finally, the Zhengzhou City was taken as an example, the comprehensive indices of urban flood-bearing risk from 2006 to 2015 were evaluated. The results showed that the comprehensive risk of Zhengzhou City was generally on a slow upward trend, from II level (moderate-risk) in 2006 to III level (secondary high-risk) in 2015, which was mainly due to the mismatch between the rapid development of urbanization and the slow improvement of DPAM capabilities. This paper is expected to provide scientific reference and technical support for urban flood disaster prevention and sponge city construction.

Suggested Citation

  • Hong Lv & Xinjian Guan & Yu Meng, 2020. "Comprehensive evaluation of urban flood-bearing risks based on combined compound fuzzy matter-element and entropy weight model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1823-1841, September.
  • Handle: RePEc:spr:nathaz:v:103:y:2020:i:2:d:10.1007_s11069-020-04056-y
    DOI: 10.1007/s11069-020-04056-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-020-04056-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-020-04056-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Haixing Liu & Yuntao Wang & Chi Zhang & Albert S. Chen & Guangtao Fu, 2018. "Correction to: Assessing real options in urban surface water flood risk management under climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 19-19, October.
    2. Hyomin Kim & Dong-Kun Lee & Sunyong Sung, 2016. "Effect of Urban Green Spaces and Flooded Area Type on Flooding Probability," Sustainability, MDPI, vol. 8(2), pages 1-17, January.
    3. Ravinesh Deo & Hi-Ryong Byun & Jan Adamowski & Do-Woo Kim, 2015. "A Real-time Flood Monitoring Index Based on Daily Effective Precipitation and its Application to Brisbane and Lockyer Valley Flood Events," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(11), pages 4075-4093, September.
    4. Yamei Wang & Zhongwu Li & Zhenghong Tang & Guangming Zeng, 2011. "A GIS-Based Spatial Multi-Criteria Approach for Flood Risk Assessment in the Dongting Lake Region, Hunan, Central China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3465-3484, October.
    5. Haixing Liu & Yuntao Wang & Chi Zhang & Albert S. Chen & Guangtao Fu, 2018. "Assessing real options in urban surface water flood risk management under climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 1-18, October.
    6. Sebastian Scheuer & Dagmar Haase & Volker Meyer, 2011. "Exploring multicriteria flood vulnerability by integrating economic, social and ecological dimensions of flood risk and coping capacity: from a starting point view towards an end point view of vulnera," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(2), pages 731-751, August.
    7. Richard Black & Stephen R. G. Bennett & Sandy M. Thomas & John R. Beddington, 2011. "Migration as adaptation," Nature, Nature, vol. 478(7370), pages 447-449, October.
    8. Chengguang Lai & Xiaohong Chen & Xiaoyu Chen & Zhaoli Wang & Xushu Wu & Shiwei Zhao, 2015. "A fuzzy comprehensive evaluation model for flood risk based on the combination weight of game theory," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1243-1259, June.
    9. Irfan Ahmad Rana & Jayant K. Routray, 2018. "Integrated methodology for flood risk assessment and application in urban communities of Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(1), pages 239-266, March.
    10. Stefanos Stefanidis & Dimitrios Stathis, 2013. "Assessment of flood hazard based on natural and anthropogenic factors using analytic hierarchy process (AHP)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 569-585, September.
    11. Weili Duan & Bin He & Daniel Nover & Jingli Fan & Guishan Yang & Wen Chen & Huifang Meng & Chuanming Liu, 2016. "Floods and associated socioeconomic damages in China over the last century," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 401-413, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ning Zhang & Zichen Wang & Lan Zhang & Xiao Yang, 2021. "Assessment of Water Resources Carrying Risk and the Coping Behaviors of the Government and the Public," IJERPH, MDPI, vol. 18(14), pages 1-20, July.
    2. Wei Wang & Chenhong Xia & Chaofeng Liu & Ziyi Wang, 2020. "Study of double combination evaluation of urban comprehensive disaster risk," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1181-1209, November.
    3. Xianghai Li & Mengjie Li & Kaikai Cui & Tao Lu & Yanli Xie & Delin Liu, 2022. "Evaluation of Comprehensive Emergency Capacity to Urban Flood Disaster: An Example from Zhengzhou City in Henan Province, China," Sustainability, MDPI, vol. 14(21), pages 1-16, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Hussain & Muhammad Tayyab & Jiquan Zhang & Ashfaq Ahmad Shah & Kashif Ullah & Ummer Mehmood & Bazel Al-Shaibah, 2021. "GIS-Based Multi-Criteria Approach for Flood Vulnerability Assessment and Mapping in District Shangla: Khyber Pakhtunkhwa, Pakistan," Sustainability, MDPI, vol. 13(6), pages 1-29, March.
    2. Shanshan Hu & Xiangjun Cheng & Demin Zhou & Hong Zhang, 2017. "GIS-based flood risk assessment in suburban areas: a case study of the Fangshan District, Beijing," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1525-1543, July.
    3. Ebrahim Ahmadisharaf & Alfred J. Kalyanapu & Eun-Sung Chung, 2017. "Sustainability-Based Flood Hazard Mapping of the Swannanoa River Watershed," Sustainability, MDPI, vol. 9(10), pages 1-15, September.
    4. Stefanos Stefanidis & Dimitrios Stathis, 2013. "Assessment of flood hazard based on natural and anthropogenic factors using analytic hierarchy process (AHP)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 569-585, September.
    5. Byungsun Yang & Dong Kun Lee, 2021. "Planning Strategy for the Reduction of Runoff Using Urban Green Space," Sustainability, MDPI, vol. 13(4), pages 1-13, February.
    6. Hao Chen & Zongxue Xu & Yang Liu & Yixuan Huang & Fang Yang, 2022. "Urban Flood Risk Assessment Based on Dynamic Population Distribution and Fuzzy Comprehensive Evaluation," IJERPH, MDPI, vol. 19(24), pages 1-17, December.
    7. Francesca Franci & Gabriele Bitelli & Emanuele Mandanici & Diofantos Hadjimitsis & Athos Agapiou, 2016. "Satellite remote sensing and GIS-based multi-criteria analysis for flood hazard mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 31-51, October.
    8. Rui-Song Quan, 2014. "Rainstorm waterlogging risk assessment in central urban area of Shanghai based on multiple scenario simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1569-1585, September.
    9. Lin Lin & Zening Wu & Qiuhua Liang, 2019. "Urban flood susceptibility analysis using a GIS-based multi-criteria analysis framework," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 455-475, June.
    10. Seong Yun Cho & Heejun Chang, 2017. "Recent research approaches to urban flood vulnerability, 2006–2016," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 633-649, August.
    11. Yijun Shi & Guofang Zhai & Shutian Zhou & Yuwen Lu & Wei Chen & Jinyang Deng, 2019. "How Can Cities Respond to Flood Disaster Risks under Multi-Scenario Simulation? A Case Study of Xiamen, China," IJERPH, MDPI, vol. 16(4), pages 1-18, February.
    12. M. M. Yagoub & Aishah A. Alsereidi & Elfadil A. Mohamed & Punitha Periyasamy & Reem Alameri & Salama Aldarmaki & Yaqein Alhashmi, 2020. "Newspapers as a validation proxy for GIS modeling in Fujairah, United Arab Emirates: identifying flood-prone areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 111-141, October.
    13. Sikhululekile Ncube & Scott Arthur, 2021. "Influence of Blue-Green and Grey Infrastructure Combinations on Natural and Human-Derived Capital in Urban Drainage Planning," Sustainability, MDPI, vol. 13(5), pages 1-16, February.
    14. Omid Rahmati & Ali Haghizadeh & Stefanos Stefanidis, 2016. "Assessing the Accuracy of GIS-Based Analytical Hierarchy Process for Watershed Prioritization; Gorganrood River Basin, Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1131-1150, February.
    15. Yenan Wu & Ping-an Zhong & Yu Zhang & Bin Xu & Biao Ma & Kun Yan, 2015. "Integrated flood risk assessment and zonation method: a case study in Huaihe River basin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 635-651, August.
    16. Guangpeng Wang & Yong Liu & Ziying Hu & Yanli Lyu & Guoming Zhang & Jifu Liu & Yun Liu & Yu Gu & Xichen Huang & Hao Zheng & Qingyan Zhang & Zongze Tong & Chang Hong & Lianyou Liu, 2020. "Flood Risk Assessment Based on Fuzzy Synthetic Evaluation Method in the Beijing-Tianjin-Hebei Metropolitan Area, China," Sustainability, MDPI, vol. 12(4), pages 1-30, February.
    17. Raymond Seyeram Nkonu & Mary Antwi & Mark Amo-Boateng & Benjamin Wullobayi Dekongmen, 2023. "GIS-based multi-criteria analytical hierarchy process modelling for urban flood vulnerability analysis, Accra Metropolis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(2), pages 1541-1568, June.
    18. K. Graff & C. Lissak & Y. Thiery & O. Maquaire & S. Costa & B. Laignel, 2019. "Analysis and quantification of potential consequences in multirisk coastal context at different spatial scales (Normandy, France)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 637-664, November.
    19. Mo Wang & Xiaoping Fu & Dongqing Zhang & Furong Chen & Jin Su & Shiqi Zhou & Jianjun Li & Yongming Zhong & Soon Keat Tan, 2023. "Urban Flooding Risk Assessment in the Rural-Urban Fringe Based on a Bayesian Classifier," Sustainability, MDPI, vol. 15(7), pages 1-16, March.
    20. Mahmoud Rezaei & Farshad Amiraslani & Najmeh Neysani Samani & Kazem Alavipanah, 2020. "Application of two fuzzy models using knowledge-based and linear aggregation approaches to identifying flooding-prone areas in Tehran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(1), pages 363-385, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:103:y:2020:i:2:d:10.1007_s11069-020-04056-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.