IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i3p615-d200553.html
   My bibliography  Save this article

Risk Assessment Using Fuzzy TOPSIS and PRAT for Sustainable Engineering Projects

Author

Listed:
  • G.K. Koulinas

    (Department of Production and Management Engineering, Democritus University of Thrace, 12 Vas. Sofias st., 67100 Xanthi, Greece)

  • O.E. Demesouka

    (Department of Production and Management Engineering, Democritus University of Thrace, 12 Vas. Sofias st., 67100 Xanthi, Greece)

  • P.K. Marhavilas

    (Department of Production and Management Engineering, Democritus University of Thrace, 12 Vas. Sofias st., 67100 Xanthi, Greece)

  • A.P. Vavatsikos

    (Department of Production and Management Engineering, Democritus University of Thrace, 12 Vas. Sofias st., 67100 Xanthi, Greece)

  • D.E. Koulouriotis

    (Department of Production and Management Engineering, Democritus University of Thrace, 12 Vas. Sofias st., 67100 Xanthi, Greece)

Abstract

In this study, we propose a safety risk assessment process using the fuzzy extension of the technique for order of preference by similarity to ideal solution (TOPSIS) for assigning priorities to risks in worksites, in order to promote the health, safety and well-being of workers, issues that are embedded within the concept of sustainability, specifically belonging to the social sphere of sustainability. The multicriteria method works in cooperation with a simple quantitative risk analysis and assessment process, the proportional risk assessment technique (PRAT), the functionality of which is based on real data. The efficiency of this approach is validated through treating a construction project example in Greece, and the results are compared with real fatal and non-fatal accidents data for the years 2014–2016. This integrated multicriteria approach can be used by risk managers as a tool for assessing safety risks and making informed decisions about the manner that a constraint budget would be spent in order to maximize health and safety in workplace.

Suggested Citation

  • G.K. Koulinas & O.E. Demesouka & P.K. Marhavilas & A.P. Vavatsikos & D.E. Koulouriotis, 2019. "Risk Assessment Using Fuzzy TOPSIS and PRAT for Sustainable Engineering Projects," Sustainability, MDPI, vol. 11(3), pages 1-15, January.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:3:p:615-:d:200553
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/3/615/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/3/615/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marhavilas, P.K. & Koulouriotis, D.E. & Spartalis, S.H., 2013. "Harmonic analysis of occupational-accident time-series as a part of the quantified risk evaluation in worksites: Application on electric power industry and construction sector," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 8-25.
    2. Byung Wan Jo & Yun Sung Lee & Jung Hoon Kim & Rana Muhammad Asad Khan, 2017. "Trend Analysis of Construction Industrial Accidents in Korea from 2011 to 2015," Sustainability, MDPI, vol. 9(8), pages 1-12, July.
    3. Panagiotis Marhavilas & Dimitrios Koulouriotis & Ioannis Nikolaou & Sotiria Tsotoulidou, 2018. "International Occupational Health and Safety Management-Systems Standards as a Frame for the Sustainability: Mapping the Territory," Sustainability, MDPI, vol. 10(10), pages 1-26, October.
    4. Gholamreza Dehdasht & Rosli Mohamad Zin & M. Salim Ferwati & Mu’azu Mohammed Abdullahi & Ali Keyvanfar & Ronald McCaffer, 2017. "DEMATEL-ANP Risk Assessment in Oil and Gas Construction Projects," Sustainability, MDPI, vol. 9(8), pages 1-24, August.
    5. Shengjun Wu & Jie Wang & Guiwu Wei & Yu Wei, 2018. "Research on Construction Engineering Project Risk Assessment with Some 2-Tuple Linguistic Neutrosophic Hamy Mean Operators," Sustainability, MDPI, vol. 10(5), pages 1-26, May.
    6. Aneziris, O.N. & Topali, E. & Papazoglou, I.A., 2012. "Occupational risk of building construction," Reliability Engineering and System Safety, Elsevier, vol. 105(C), pages 36-46.
    7. Zhenyu Guo & Yacov Y. Haimes, 2016. "Risk Assessment of Infrastructure System of Systems with Precursor Analysis," Risk Analysis, John Wiley & Sons, vol. 36(8), pages 1630-1643, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panagiotis K. Marhavilas & Michael G. Tegas & Georgios K. Koulinas & Dimitrios E. Koulouriotis, 2020. "A Joint Stochastic/Deterministic Process with Multi-Objective Decision Making Risk-Assessment Framework for Sustainable Constructions Engineering Projects—A Case Study," Sustainability, MDPI, vol. 12(10), pages 1-21, May.
    2. Ta-Chung Chu & Miroslav Kysely, 2021. "Ranking objectives of advertisements on Facebook by a fuzzy TOPSIS method," Electronic Commerce Research, Springer, vol. 21(4), pages 881-916, December.
    3. Hui-Ping Tserng & I-Cheng Cho & Chun-Hung Chen & Yu-Fan Liu, 2021. "Developing a Risk Management Process for Infrastructure Projects Using IDEF0," Sustainability, MDPI, vol. 13(12), pages 1-22, June.
    4. Fotis Kitsios & Elpiniki Chatzidimitriou & Maria Kamariotou, 2023. "The ISO/IEC 27001 Information Security Management Standard: How to Extract Value from Data in the IT Sector," Sustainability, MDPI, vol. 15(7), pages 1-17, March.
    5. Hung Duy Nguyen & Laura Macchion, 2023. "Risk management in green building: a review of the current state of research and future directions," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(3), pages 2136-2172, March.
    6. Panagiotis K. Marhavilas & Michail Filippidis & Georgios K. Koulinas & Dimitrios E. Koulouriotis, 2020. "A HAZOP with MCDM Based Risk-Assessment Approach: Focusing on the Deviations with Economic/Health/Environmental Impacts in a Process Industry," Sustainability, MDPI, vol. 12(3), pages 1-29, January.
    7. Matteo Paoletti & Vincenzo Piscopo & Chiara Sbarbati & Antonino Scarelli, 2024. "Categorization of the Potential Impact of Italian Quarries on Water Resources through a Multi-Criteria Decision Aiding-Based Model," Sustainability, MDPI, vol. 16(7), pages 1-18, March.
    8. Fani Antoniou & Nektaria Filitsa Agrafioti, 2023. "Meta-Analysis of Studies on Accident Contributing Factors in the Greek Construction Industry," Sustainability, MDPI, vol. 15(3), pages 1-20, January.
    9. Taho Yang & Shin-Yi Lin & Yu-Hsiu Hung & Chung-Chien Hong, 2022. "A Study on the Optimization of In-Process Inspection Procedure for Active Pharmaceutical Ingredients Manufacturing Process," Sustainability, MDPI, vol. 14(6), pages 1-20, March.
    10. Yildiz Kose & Hatice Nida Civan & Ertugrul Ayyildiz & Emre Cevikcan, 2022. "An Interval Valued Pythagorean Fuzzy AHP–TOPSIS Integrated Model for Ergonomic Assessment of Setup Process under SMED," Sustainability, MDPI, vol. 14(21), pages 1-30, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Panagiotis K. Marhavilas & Michail Filippidis & Georgios K. Koulinas & Dimitrios E. Koulouriotis, 2020. "A HAZOP with MCDM Based Risk-Assessment Approach: Focusing on the Deviations with Economic/Health/Environmental Impacts in a Process Industry," Sustainability, MDPI, vol. 12(3), pages 1-29, January.
    2. Panagiotis Marhavilas & Dimitrios Koulouriotis & Ioannis Nikolaou & Sotiria Tsotoulidou, 2018. "International Occupational Health and Safety Management-Systems Standards as a Frame for the Sustainability: Mapping the Territory," Sustainability, MDPI, vol. 10(10), pages 1-26, October.
    3. Mara Lombardi & Mario Fargnoli & Giuseppe Parise, 2019. "Risk Profiling from the European Statistics on Accidents at Work (ESAW) Accidents′ Databases: A Case Study in Construction Sites," IJERPH, MDPI, vol. 16(23), pages 1-22, November.
    4. Luis Fonseca & Filipe Carvalho & Gilberto Santos, 2023. "Strategic CSR: Framework for Sustainability through Management Systems Standards—Implementing and Disclosing Sustainable Development Goals and Results," Sustainability, MDPI, vol. 15(15), pages 1-24, August.
    5. Yun-Sung Lee & Do-Keun Kim & Jung-Hoon Kim, 2023. "Deep-Learning-Based Anti-Collision System for Construction Equipment Operators," Sustainability, MDPI, vol. 15(23), pages 1-28, November.
    6. Rafael Lizarralde & Jaione Ganzarain & Mikel Zubizarreta, 2020. "Assessment and Selection of Technologies for the Sustainable Development of an R&D Center," Sustainability, MDPI, vol. 12(23), pages 1-23, December.
    7. Siqi Zhang & Hui Gao & Guiwu Wei & Yu Wei & Cun Wei, 2019. "Evaluation Based on Distance from Average Solution Method for Multiple Criteria Group Decision Making under Picture 2-Tuple Linguistic Environment," Mathematics, MDPI, vol. 7(3), pages 1-14, March.
    8. Shengyu Guo & Jiali He & Jichao Li & Bing Tang, 2019. "Exploring the Impact of Unsafe Behaviors on Building Construction Accidents Using a Bayesian Network," IJERPH, MDPI, vol. 17(1), pages 1-15, December.
    9. Wu, Yunna & Song, Zixin & Li, Lingwenying & Xu, Ruhang, 2018. "Risk management of public-private partnership charging infrastructure projects in China based on a three-dimension framework," Energy, Elsevier, vol. 165(PA), pages 1089-1101.
    10. Ahmed, Umair & Carpitella, Silvia & Certa, Antonella, 2021. "An integrated methodological approach for optimising complex systems subjected to predictive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    11. Milena Lakicevic & Bojan Srdjevic, 2022. "An Approach to Developing the Multicriteria Optimal Forest Management Plan: The “Fruska Gora” National Park Case Study," Land, MDPI, vol. 11(10), pages 1-14, September.
    12. Guo, Shengyu & Zhou, Xinyu & Tang, Bing & Gong, Peisong, 2020. "Exploring the behavioral risk chains of accidents using complex network theory in the construction industry," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    13. Zengxian Li & Guiwu Wei & Hui Gao, 2018. "Methods for Multiple Attribute Decision Making with Interval-Valued Pythagorean Fuzzy Information," Mathematics, MDPI, vol. 6(11), pages 1-27, October.
    14. Jie Wang & Guiwu Wei & Hui Gao, 2018. "Approaches to Multiple Attribute Decision Making with Interval-Valued 2-Tuple Linguistic Pythagorean Fuzzy Information," Mathematics, MDPI, vol. 6(10), pages 1-45, October.
    15. Foroogh Ghasemi & Mohammad Hossein Mahmoudi Sari & Vahidreza Yousefi & Reza Falsafi & Jolanta Tamošaitienė, 2018. "Project Portfolio Risk Identification and Analysis, Considering Project Risk Interactions and Using Bayesian Networks," Sustainability, MDPI, vol. 10(5), pages 1-23, May.
    16. Sotirios Kavouras & Ioannis Vardopoulos & Roido Mitoula & Antonis A. Zorpas & Panagiotis Kaldis, 2022. "Occupational Health and Safety Scope Significance in Achieving Sustainability," Sustainability, MDPI, vol. 14(4), pages 1-17, February.
    17. Chol-Jung Park & Soo-Yong Kim & Minh V. Nguyen, 2021. "Fuzzy TOPSIS Application to Rank Determinants of Employee Retention in Construction Companies: South Korean Case," Sustainability, MDPI, vol. 13(11), pages 1-16, May.
    18. Liangping Wu & Guiwu Wei & Jiang Wu & Cun Wei, 2020. "Some Interval-Valued Intuitionistic Fuzzy Dombi Heronian Mean Operators and their Application for Evaluating the Ecological Value of Forest Ecological Tourism Demonstration Areas," IJERPH, MDPI, vol. 17(3), pages 1-31, January.
    19. Moath Alrifaey & Tang Sai Hong & Eris Elianddy Supeni & Azizan As’arry & Chun Kit Ang, 2019. "Identification and Prioritization of Risk Factors in an Electrical Generator Based on the Hybrid FMEA Framework," Energies, MDPI, vol. 12(4), pages 1-22, February.
    20. Liangping Wu & Guiwu Wei & Hui Gao & Yu Wei, 2018. "Some Interval-Valued Intuitionistic Fuzzy Dombi Hamy Mean Operators and Their Application for Evaluating the Elderly Tourism Service Quality in Tourism Destination," Mathematics, MDPI, vol. 6(12), pages 1-20, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:3:p:615-:d:200553. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.