IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i2p529-d199294.html
   My bibliography  Save this article

Spatial Analysis of Social Vulnerability to Floods Based on the MOVE Framework and Information Entropy Method: Case Study of Katsushika Ward, Tokyo

Author

Listed:
  • Lianxiao

    (Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan)

  • Takehiro Morimoto

    (Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan)

Abstract

Tokyo is located in a lowland area that is vulnerable to flooding. Due to global climate change, the scalability and frequency of flooding is increasing. On the other hand, population aging and family structural changes, as well as the lack of adaptation measures, would accelerate flooding vulnerability. The key factors involved in social vulnerability must be studied to reduce the risk of flooding. In this study, we refer to the MOVE framework (a disaster vulnerability assessment framework) and analyze it from three perspectives: Exposure to social vulnerability, susceptibility, and resilience. We subsequently develop an index system to complete the evaluation using 11 indicators. The collected data will help reveal social vulnerability to floods in the Katsushika Ward, Tokyo, using the information entropy method and GIS. We found that the western region of the Katsushika Ward is at more risk than the eastern region during flooding. Additionally, the possibility of a serious crisis erupting is greater in the southwestern region than in the northwestern region. Consequently, we conclude that the spatial distribution of flooding varies in the region. The results of this study will help in understanding social vulnerability, in selecting and combining adaptation measures suited to the characteristics of the area, and in the effective and efficient implementation of these measures by the local government’s disaster department.

Suggested Citation

  • Lianxiao & Takehiro Morimoto, 2019. "Spatial Analysis of Social Vulnerability to Floods Based on the MOVE Framework and Information Entropy Method: Case Study of Katsushika Ward, Tokyo," Sustainability, MDPI, vol. 11(2), pages 1-19, January.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:2:p:529-:d:199294
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/2/529/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/2/529/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daanish Mustafa, 1998. "Structural Causes of Vulnerability to Flood Hazard in Pakistan," Economic Geography, Taylor & Francis Journals, vol. 74(3), pages 289-305, July.
    2. J. Birkmann & O. Cardona & M. Carreño & A. Barbat & M. Pelling & S. Schneiderbauer & S. Kienberger & M. Keiler & D. Alexander & P. Zeil & T. Welle, 2013. "Framing vulnerability, risk and societal responses: the MOVE framework," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 193-211, June.
    3. George Clark & Susanne Moser & Samuel Ratick & Kirstin Dow & William Meyer & Srinivas Emani & Weigen Jin & Jeanne Kasperson & Roger Kasperson & Harry Schwarz, 1998. "Assessing the Vulnerability of Coastal Communities to Extreme Storms: The Case of Revere, MA., USA," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 3(1), pages 59-82, January.
    4. Alex de Sherbinin & Guillem Bardy, 2015. "Social vulnerability to floods in two coastal megacities: New York City and Mumbai," Vienna Yearbook of Population Research, Vienna Institute of Demography (VID) of the Austrian Academy of Sciences in Vienna, vol. 13(1), pages 131-165.
    5. Keiko Ikeda, 1995. "Gender Differences in Human Loss and Vulnerability in Natural Disasters: A Case Study from Bangladesh," Indian Journal of Gender Studies, Centre for Women's Development Studies, vol. 2(2), pages 171-193, September.
    6. Md Aboul Fazal Younus & Md Alamgir Kabir, 2018. "Climate Change Vulnerability Assessment and Adaptation of Bangladesh: Mechanisms, Notions and Solutions," Sustainability, MDPI, vol. 10(11), pages 1-17, November.
    7. Linda Anderson-Berry & David King, 2005. "Mitigation of the Impact of Tropical Cyclones in Northern Australia through Community Capacity Enhancement," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 10(3), pages 367-392, July.
    8. Lisa Rygel & David O’sullivan & Brent Yarnal, 2006. "A Method for Constructing a Social Vulnerability Index: An Application to Hurricane Storm Surges in a Developed Country," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(3), pages 741-764, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyun Il Choi, 2019. "Spatial Assessment of Damage Vulnerability to Storms Based on the Analysis of Historical Damage Cost Data in the Korean Peninsula," Sustainability, MDPI, vol. 11(21), pages 1-16, October.
    2. Ali Jamshed & Joern Birkmann & Daniel Feldmeyer & Irfan Ahmad Rana, 2020. "A Conceptual Framework to Understand the Dynamics of Rural–Urban Linkages for Rural Flood Vulnerability," Sustainability, MDPI, vol. 12(7), pages 1-25, April.
    3. Kylie Mason & Kirstin Lindberg & Carolin Haenfling & Allan Schori & Helene Marsters & Deborah Read & Barry Borman, 2021. "Social Vulnerability Indicators for Flooding in Aotearoa New Zealand," IJERPH, MDPI, vol. 18(8), pages 1-31, April.
    4. Chien-Hao Sung & Shyue-Cherng Liaw, 2021. "Using Spatial Pattern Analysis to Explore the Relationship between Vulnerability and Resilience to Natural Hazards," IJERPH, MDPI, vol. 18(11), pages 1-16, May.
    5. Da Huang & Mei Han, 2021. "Research on Evaluation Method of Freight Transportation Environmental Sustainability," Sustainability, MDPI, vol. 13(5), pages 1-13, March.
    6. Chipo Mudavanhu & Tawanda Manyangadze & Emmanuel Mavhura & Ezra Pedzisai & Desmond Manatsa, 2020. "Rural households’ vulnerability and risk of flooding in Mbire District, Zimbabwe," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3591-3608, September.
    7. Neiler Medina & Yared Abayneh Abebe & Arlex Sanchez & Zoran Vojinovic, 2020. "Assessing Socioeconomic Vulnerability after a Hurricane: A Combined Use of an Index-Based approach and Principal Components Analysis," Sustainability, MDPI, vol. 12(4), pages 1-31, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eric Tate, 2012. "Social vulnerability indices: a comparative assessment using uncertainty and sensitivity analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 325-347, September.
    2. Mohsen Alizadeh & Esmaeil Alizadeh & Sara Asadollahpour Kotenaee & Himan Shahabi & Amin Beiranvand Pour & Mahdi Panahi & Baharin Bin Ahmad & Lee Saro, 2018. "Social Vulnerability Assessment Using Artificial Neural Network (ANN) Model for Earthquake Hazard in Tabriz City, Iran," Sustainability, MDPI, vol. 10(10), pages 1-23, September.
    3. Abdur Rahim Hamidi & Jiangwei Wang & Shiyao Guo & Zhongping Zeng, 2020. "Flood vulnerability assessment using MOVE framework: a case study of the northern part of district Peshawar, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(2), pages 385-408, March.
    4. Cibele Oliveira Lima & Jarbas Bonetti, 2020. "Bibliometric analysis of the scientific production on coastal communities’ social vulnerability to climate change and to the impact of extreme events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 1589-1610, July.
    5. Alondra Chamorro & Tomás Echaveguren & Eduardo Allen & Marta Contreras & Joaquín Dagá & Hernan de Solminihac & Luis E. Lara, 2020. "Sustainable Risk Management of Rural Road Networks Exposed to Natural Hazards: Application to Volcanic Lahars in Chile," Sustainability, MDPI, vol. 12(17), pages 1-23, August.
    6. Jenny Moreno & Duncan Shaw, 2018. "Women’s empowerment following disaster: a longitudinal study of social change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 205-224, May.
    7. Daminda Solangaarachchi & Amy Griffin & Michael Doherty, 2012. "Social vulnerability in the context of bushfire risk at the urban-bush interface in Sydney: a case study of the Blue Mountains and Ku-ring-gai local council areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1873-1898, November.
    8. Elia A Machado & Samuel Ratick, 2018. "Implications of indicator aggregation methods for global change vulnerability reduction efforts," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(7), pages 1109-1141, October.
    9. Hao-Tang Jhan & Rhoda Ballinger & Azmath Jaleel & Kuo-Huan Ting, 2020. "Development and application of a Socioeconomic Vulnerability Indicator Framework (SVIF) for Local Climate Change Adaptation in Taiwan," Sustainability, MDPI, vol. 12(4), pages 1-27, February.
    10. Diane Keogh & Armando Apan & Shahbaz Mushtaq & David King & Melanie Thomas, 2011. "Resilience, vulnerability and adaptive capacity of an inland rural town prone to flooding: a climate change adaptation case study of Charleville, Queensland, Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(2), pages 699-723, November.
    11. Jose Manuel Diaz-Sarachaga & Daniel Jato-Espino, 2020. "Analysis of vulnerability assessment frameworks and methodologies in urban areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(1), pages 437-457, January.
    12. Ali Jamshed & Joern Birkmann & Daniel Feldmeyer & Irfan Ahmad Rana, 2020. "A Conceptual Framework to Understand the Dynamics of Rural–Urban Linkages for Rural Flood Vulnerability," Sustainability, MDPI, vol. 12(7), pages 1-25, April.
    13. Sam Barrett, 2015. "Subnational Adaptation Finance Allocation: Comparing Decentralized and Devolved Political Institutions in Kenya," Global Environmental Politics, MIT Press, vol. 15(3), pages 118-139, August.
    14. Ren, Chongqiang & Zhai, Guofang & Zhou, Shutian & Li, Shasha & Chen, Wei, 2017. "Adaptation assessment and analysis of economic growth since the market reform in China," Economics Discussion Papers 2017-24, Kiel Institute for the World Economy (IfW Kiel).
    15. Jie Liu & Zhenwu Shi & Dan Wang, 2016. "Measuring and mapping the flood vulnerability based on land-use patterns: a case study of Beijing, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1545-1565, September.
    16. Erwin, Anna & Ma, Zhao & Popovici, Ruxandra & Salas O’Brien, Emma Patricia & Zanotti, Laura & Silva, Chelsea A. & Zeballos, Eliseo Zeballos & Bauchet, Jonathan & Calderón, Nelly Ramírez & Arce Larrea,, 2022. "Linking migration to community resilience in the receiving basin of a large-scale water transfer project," Land Use Policy, Elsevier, vol. 114(C).
    17. Tauisi Taupo & Ilan Noy, 2017. "At the Very Edge of a Storm: The Impact of a Distant Cyclone on Atoll Islands," Economics of Disasters and Climate Change, Springer, vol. 1(2), pages 143-166, July.
    18. Gressel, Christie M. & Rashed, Tarek & Maciuika, Laura Aswati & Sheshadri, Srividya & Coley, Christopher & Kongeseri, Sreeram & Bhavani, Rao R, 2020. "Vulnerability mapping: A conceptual framework towards a context-based approach to women’s empowerment," World Development Perspectives, Elsevier, vol. 20(C).
    19. Mohammad Karamouz & Zahra Zahmatkesh & Sara Nazif & Ali Razmi, 2014. "An Evaluation of Climate Change Impacts on Extreme Sea Level Variability: Coastal Area of New York City," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3697-3714, September.
    20. Bayes Ahmed, 2015. "Landslide susceptibility modelling applying user-defined weighting and data-driven statistical techniques in Cox’s Bazar Municipality, Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1707-1737, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:2:p:529-:d:199294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.