IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i11p5634-d561637.html
   My bibliography  Save this article

Using Spatial Pattern Analysis to Explore the Relationship between Vulnerability and Resilience to Natural Hazards

Author

Listed:
  • Chien-Hao Sung

    (Department of Geography, National Taiwan Normal University, Taipei 10610, Taiwan)

  • Shyue-Cherng Liaw

    (Department of Geography, National Taiwan Normal University, Taipei 10610, Taiwan)

Abstract

This research aims to explore the spatial pattern of vulnerability and resilience to natural hazards in northeastern Taiwan. We apply the spatially explicit resilience-vulnerability model (SERV) to quantify the vulnerability and resilience to natural hazards, including flood and debris flow events, which are the most common natural hazards in our case study area due to the topography and precipitation features. In order to provide a concise result, we apply the principal component analysis (PCA) to aggregate the correlated variables. Moreover, we use the spatial autocorrelation analysis to analyze the spatial pattern and spatial difference. We also adopt the geographically weighted regression (GWR) to validate the effectiveness of SERV. The result of GWR shows that SERV is valid and unbiased. Moreover, the result of spatial autocorrelation analysis shows that the mountain areas are extremely vulnerable and lack enough resilience. In contrast, the urban regions in plain areas show low vulnerability and high resilience. The spatial difference between the mountain and plain areas is significant. The topography is the most significant factor for the spatial difference. The high elevation and steep slopes in mountain areas are significant obstacles for socioeconomic development. This situation causes consequences of high vulnerability and low resilience. The other regions, the urban regions in the plain areas, have favorable topography for socioeconomic development. Eventually, it forms a scenario of low vulnerability and high resilience.

Suggested Citation

  • Chien-Hao Sung & Shyue-Cherng Liaw, 2021. "Using Spatial Pattern Analysis to Explore the Relationship between Vulnerability and Resilience to Natural Hazards," IJERPH, MDPI, vol. 18(11), pages 1-16, May.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:11:p:5634-:d:561637
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/11/5634/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/11/5634/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Martha-Liliana Carreño & Omar Cardona & Alex Barbat, 2007. "Urban Seismic Risk Evaluation: A Holistic Approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 40(1), pages 137-172, January.
    2. Diana Contreras, 2019. "The Integrated Spatial Pattern of Child Mortality during the 2012–2016 Drought in La Guajira, Colombia," Sustainability, MDPI, vol. 11(24), pages 1-23, December.
    3. Lianxiao & Takehiro Morimoto, 2019. "Spatial Analysis of Social Vulnerability to Floods Based on the MOVE Framework and Information Entropy Method: Case Study of Katsushika Ward, Tokyo," Sustainability, MDPI, vol. 11(2), pages 1-19, January.
    4. Christian Kuhlicke & Anna Scolobig & Sue Tapsell & Annett Steinführer & Bruna Marchi, 2011. "Contextualizing social vulnerability: findings from case studies across Europe," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(2), pages 789-810, August.
    5. Chongming Wang & Brent Yarnal, 2012. "The vulnerability of the elderly to hurricane hazards in Sarasota, Florida," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 349-373, September.
    6. Frigerio, Ivan & De Amicis, Mattia, 2016. "Mapping social vulnerability to natural hazards in Italy: A suitable tool for risk mitigation strategies," Environmental Science & Policy, Elsevier, vol. 63(C), pages 187-196.
    7. Yee Leung & Chang-Lin Mei & Wen-Xiu Zhang, 2000. "Statistical Tests for Spatial Nonstationarity Based on the Geographically Weighted Regression Model," Environment and Planning A, , vol. 32(1), pages 9-32, January.
    8. Yang Zhou & Ning Li & Wenxiang Wu & Jidong Wu & Peijun Shi, 2014. "Local Spatial and Temporal Factors Influencing Population and Societal Vulnerability to Natural Disasters," Risk Analysis, John Wiley & Sons, vol. 34(4), pages 614-639, April.
    9. Susan Cutter, 2016. "The landscape of disaster resilience indicators in the USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 741-758, January.
    10. Bradley Bereitschaft, 2017. "Equity in Microscale Urban Design and Walkability: A Photographic Survey of Six Pittsburgh Streetscapes," Sustainability, MDPI, vol. 9(7), pages 1-20, July.
    11. D.K. Yoon & Jung Eun Kang & Samuel D. Brody, 2016. "A measurement of community disaster resilience in Korea," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 59(3), pages 436-460, March.
    12. Barnett, Jon, 2001. "Adapting to Climate Change in Pacific Island Countries: The Problem of Uncertainty," World Development, Elsevier, vol. 29(6), pages 977-993, June.
    13. Susan L. Cutter & Bryan J. Boruff & W. Lynn Shirley, 2003. "Social Vulnerability to Environmental Hazards," Social Science Quarterly, Southwestern Social Science Association, vol. 84(2), pages 242-261, June.
    14. Haihong Yuan & Xiaolu Gao & Wei Qi, 2019. "Fine-Scale Spatiotemporal Analysis of Population Vulnerability to Earthquake Disasters: Theoretical Models and Application to Cities," Sustainability, MDPI, vol. 11(7), pages 1-19, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Loredana Antronico & Maria Teresa Carone & Roberto Coscarelli, 2023. "An approach to measure resilience of communities to climate change: a case study in Calabria (Southern Italy)," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(4), pages 1-28, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicolás C. Bronfman & Paula B. Repetto & Nikole Guerrero & Javiera V. Castañeda & Pamela C. Cisternas, 2021. "Temporal evolution in social vulnerability to natural hazards in Chile," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1757-1784, June.
    2. Ibolya Török, 2018. "Qualitative Assessment of Social Vulnerability to Flood Hazards in Romania," Sustainability, MDPI, vol. 10(10), pages 1-20, October.
    3. Sanam K. Aksha & Christopher T. Emrich, 2020. "Benchmarking Community Disaster Resilience in Nepal," IJERPH, MDPI, vol. 17(6), pages 1-22, March.
    4. Yi Ge & Wen Dou & Jianping Dai, 2017. "A New Approach to Identify Social Vulnerability to Climate Change in the Yangtze River Delta," Sustainability, MDPI, vol. 9(12), pages 1-19, December.
    5. Kylie Mason & Kirstin Lindberg & Carolin Haenfling & Allan Schori & Helene Marsters & Deborah Read & Barry Borman, 2021. "Social Vulnerability Indicators for Flooding in Aotearoa New Zealand," IJERPH, MDPI, vol. 18(8), pages 1-31, April.
    6. Navdeep Agrawal & Laxmi Gupta & Jagabandhu Dixit, 2021. "Assessment of the Socioeconomic Vulnerability to Seismic Hazards in the National Capital Region of India Using Factor Analysis," Sustainability, MDPI, vol. 13(17), pages 1-19, August.
    7. Paul M. Johnson & Corey E. Brady & Craig Philip & Hiba Baroud & Janey V. Camp & Mark Abkowitz, 2020. "A Factor Analysis Approach Toward Reconciling Community Vulnerability and Resilience Indices for Natural Hazards," Risk Analysis, John Wiley & Sons, vol. 40(9), pages 1795-1810, September.
    8. Nejad, Mohammad Motalleb & Erdogan, Sevgi & Cirillo, Cinzia, 2021. "A statistical approach to small area synthetic population generation as a basis for carless evacuation planning," Journal of Transport Geography, Elsevier, vol. 90(C).
    9. Hao-Tang Jhan & Rhoda Ballinger & Azmath Jaleel & Kuo-Huan Ting, 2020. "Development and application of a Socioeconomic Vulnerability Indicator Framework (SVIF) for Local Climate Change Adaptation in Taiwan," Sustainability, MDPI, vol. 12(4), pages 1-27, February.
    10. Firas Gerges & Hani Nassif & Xiaolong Geng & Holly A. Michael & Michel C. Boufadel, 2022. "GIS-based approach for evaluating a community intrinsic resilience index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1271-1299, March.
    11. José Francisco León-Cruz & Rocío Castillo-Aja, 2022. "A GIS-based approach for tornado risk assessment in Mexico," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1563-1583, November.
    12. Xiao‐Bing Hu & Hang Li & XiaoMei Guo & Pieter H. A. J. M. van Gelder & Peijun Shi, 2019. "Spatial Vulnerability of Network Systems under Spatially Local Hazards," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 162-179, January.
    13. Hung-Chih Hung & Ming-Chin Ho & Yi-Jie Chen & Chang-Yi Chian & Su-Ying Chen, 2013. "Integrating long-term seismic risk changes into improving emergency response and land-use planning: a case study for the Hsinchu City, Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 491-508, October.
    14. Abdur Rahim Hamidi & Jiangwei Wang & Shiyao Guo & Zhongping Zeng, 2020. "Flood vulnerability assessment using MOVE framework: a case study of the northern part of district Peshawar, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(2), pages 385-408, March.
    15. Pagliacci, Francesco & Russo, Margherita, 2018. "Be (and have) good neighbours! Factors of vulnerability in the case of multiple hazards," MPRA Paper 98044, University Library of Munich, Germany, revised 25 Nov 2019.
    16. Chipo Mudavanhu & Tawanda Manyangadze & Emmanuel Mavhura & Ezra Pedzisai & Desmond Manatsa, 2020. "Rural households’ vulnerability and risk of flooding in Mbire District, Zimbabwe," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3591-3608, September.
    17. Mohammad Abdul Quader & Amanat Ullah Khan & Matthieu Kervyn, 2017. "Assessing Risks from Cyclones for Human Lives and Livelihoods in the Coastal Region of Bangladesh," IJERPH, MDPI, vol. 14(8), pages 1-26, July.
    18. Nikole Guerrero & Marta Contreras & Alondra Chamorro & Carolina Martínez & Tomás Echaveguren, 2023. "Social vulnerability in Chile: challenges for multi-scale analysis and disaster risk reduction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 3067-3102, July.
    19. Seunghoo Jeong & D. K. Yoon, 2018. "Examining Vulnerability Factors to Natural Disasters with a Spatial Autoregressive Model: The Case of South Korea," Sustainability, MDPI, vol. 10(5), pages 1-13, May.
    20. Leslie Gillespie‐Marthaler & Katherine Nelson & Hiba Baroud & Mark Abkowitz, 2019. "Selecting Indicators for Assessing Community Sustainable Resilience," Risk Analysis, John Wiley & Sons, vol. 39(11), pages 2479-2498, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:11:p:5634-:d:561637. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.