IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i2p445-d198129.html
   My bibliography  Save this article

Spatiotemporal Changes in Evapotranspiration from an Overexploited Water Resources Basin in Arid Northern China and Their Implications for Ecosystem Management

Author

Listed:
  • Jianfu Liu

    (Department of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361024, Fujian, China)

  • Yujiu Xiong

    (School of Civil Engineering, Sun Yat-Sen University, Guangzhou 510275, Guangdong, China
    Guangdong Engineering Technology Research Center of Water Security Regulation and Control for Southern China, Sun Yat-sen University, Guangzhou 510275, Guangdong, China)

  • Jianlin Tian

    (School of Civil Engineering and Architecture, Jishou University, Zhangjiajie 427000, Hunan, China
    School of Geography and Planning, Sun Yat-Sen University, Guangzhou 510275, Guangdong, China)

  • Zhihang Tan

    (School of Geography and Planning, Sun Yat-Sen University, Guangzhou 510275, Guangdong, China)

Abstract

Evapotranspiration (ET), including evaporation from soil and water surfaces and transpiration from vegetation, influences water distribution in the soil-plant-atmosphere continuum, especially in arid areas where water is a key limiting factor. Therefore, understanding the spatiotemporal dynamics of ET, including its two components of soil evaporation (Es) and vegetation transpiration (Ec), can be useful for water resource management and ecological restoration in arid regions. Based on ET data from 2002 to 2012, the spatiotemporal variations in ET were evaluated in the Shiyang River Basin in arid Northwest China. The results showed the following: (1) spatially, ET decreased from upstream of the Qilian Mountains to the middle and downstream, with a mean annual value of 316 mm; (2) temporally, ET showed a single peak curve throughout the year, with the highest value occurring in summer; (3) ET showed a downward trend (from 350 to 265 mm) before 2009 and thereafter increased (from 265 to 345 mm); and (4) water use efficiency, indicated by the ratio of Ec to ET, was low in the cropland, with a mean value of 50.9%. Further analysis indicates that decreases in ET are mainly caused by vegetation decreases; in contrast, ecological restriction measures and strict water resource management policies in the middle reaches of the basin led to ET increases. It is concluded that understanding ET and its two components can elucidate the connections between water and human society.

Suggested Citation

  • Jianfu Liu & Yujiu Xiong & Jianlin Tian & Zhihang Tan, 2019. "Spatiotemporal Changes in Evapotranspiration from an Overexploited Water Resources Basin in Arid Northern China and Their Implications for Ecosystem Management," Sustainability, MDPI, vol. 11(2), pages 1-13, January.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:2:p:445-:d:198129
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/2/445/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/2/445/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giorgos Papadavid & Diofantos Hadjimitsis & Leonidas Toulios & Silas Michaelides, 2013. "A Modified SEBAL Modeling Approach for Estimating Crop Evapotranspiration in Semi-arid Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(9), pages 3493-3506, July.
    2. Guoting Geng & Robin Wardlaw, 2013. "Application of Multi-Criterion Decision Making Analysis to Integrated Water Resources Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3191-3207, June.
    3. Zhang, Yongqiang & Kendy, Eloise & Qiang, Yu & Changming, Liu & Yanjun, Shen & Hongyong, Sun, 2004. "Effect of soil water deficit on evapotranspiration, crop yield, and water use efficiency in the North China Plain," Agricultural Water Management, Elsevier, vol. 64(2), pages 107-122, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chunjiang An & Mengfan Cai & Christophe Guy, 2020. "Rural Sustainable Environmental Management," Sustainability, MDPI, vol. 12(16), pages 1-5, August.
    2. Eusebio Cano & Carmelo M. Musarella & Ana Cano-Ortiz & José C. Piñar Fuentes & Alfonso Rodríguez Torres & Sara Del Río González & Carlos J. Pinto Gomes & Ricardo Quinto-Canas & Giovanni Spampinato, 2019. "Geobotanical Study of the Microforests of Juniperus oxycedrus subsp. badia in the Central and Southern Iberian Peninsula," Sustainability, MDPI, vol. 11(4), pages 1-31, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Azevedo, Pedro Vieira & de Sousa, Inaja Francisco & da Silva, Bernardo Barbosa & da Silva, Vicente de Paulo Rodrigues, 2006. "Water-use efficiency of dwarf-green coconut (Cocos nucifera L.) orchards in northeast Brazil," Agricultural Water Management, Elsevier, vol. 84(3), pages 259-264, August.
    2. Yan, Nana & Wu, Bingfang & Perry, Chris & Zeng, Hongwei, 2015. "Assessing potential water savings in agriculture on the Hai Basin plain, China," Agricultural Water Management, Elsevier, vol. 154(C), pages 11-19.
    3. Stella Santana & Gilberto Barroso, 2014. "Integrated Ecosystem Management of River Basins and the Coastal Zone in Brazil," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(14), pages 4927-4942, November.
    4. Abbas Roozbahani & Ebrahim Ebrahimi & Mohammad Ebrahim Banihabib, 2018. "A Framework for Ground Water Management Based on Bayesian Network and MCDM Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(15), pages 4985-5005, December.
    5. Arash Malekian & Ali Azarnivand, 2016. "Application of Integrated Shannon’s Entropy and VIKOR Techniques in Prioritization of Flood Risk in the Shemshak Watershed, Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 409-425, January.
    6. Farhad Yazdandoost & Seyyed Ali Yazdani, 2019. "A New Integrated Portfolio Based Water-Energy-Environment Nexus in Wetland Catchments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 2991-3009, July.
    7. Mohammad Rahman & Lena Jaumann & Nils Lerche & Fabian Renatus & Ann Buchs & Rudolf Gade & Jutta Geldermann & Martin Sauter, 2015. "Selection of the Best Inland Waterway Structure: A Multicriteria Decision Analysis Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2733-2749, June.
    8. Kukal, M.S. & Irmak, S., 2020. "Impact of irrigation on interannual variability in United States agricultural productivity," Agricultural Water Management, Elsevier, vol. 234(C).
    9. Yuan, Chengfu & Feng, Shaoyuan & Huo, Zailin & Ji, Quanyi, 2019. "Effects of deficit irrigation with saline water on soil water-salt distribution and water use efficiency of maize for seed production in arid Northwest China," Agricultural Water Management, Elsevier, vol. 212(C), pages 424-432.
    10. José Ribas, 2014. "An Assessment of Conflicting Intentions in the Use of Multipurpose Water Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 3989-4000, September.
    11. Mati, Rastislav & Kotorová, Dana & Gombos, Milan & Kandra, Branislav, 2011. "Development of evapotranspiration and water supply of clay-loamy soil on the East Slovak Lowland," Agricultural Water Management, Elsevier, vol. 98(7), pages 1133-1140, May.
    12. Jian Yin & Chesheng Zhan & Wen Ye, 2016. "An Experimental Study on Evapotranspiration Data Assimilation Based on the Hydrological Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5263-5279, November.
    13. Hossein Mikhak & Mehdi Rahimian & Saeed Gholamrezai, 2022. "Implications of changing cropping pattern to low water demand plants due to climate change: evidence from Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 9833-9850, August.
    14. Afreen Siddiqi & Farah Ereiqat & Laura Diaz Anadon, 2016. "Formulating Expectations for Future Water Availability through Infrastructure Development Decisions in Arid Regions," Systems Engineering, John Wiley & Sons, vol. 19(2), pages 101-110, March.
    15. Iqbal, M. Anjum & Shen, Yanjun & Stricevic, Ruzica & Pei, Hongwei & Sun, Hongyoung & Amiri, Ebrahim & Penas, Angel & del Rio, Sara, 2014. "Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation," Agricultural Water Management, Elsevier, vol. 135(C), pages 61-72.
    16. Ali, M.H. & Hoque, M.R. & Hassan, A.A. & Khair, A., 2007. "Effects of deficit irrigation on yield, water productivity, and economic returns of wheat," Agricultural Water Management, Elsevier, vol. 92(3), pages 151-161, September.
    17. Chen, Yang & Wang, Lu & Tong, Ling & Hao, Xinmei & Wu, Xuanyi & Ding, Risheng & Kang, Shaozhong & Li, Sien, 2023. "Effects of biochar addition and deficit irrigation with brackish water on yield-scaled N2O emissions under drip irrigation with mulching," Agricultural Water Management, Elsevier, vol. 277(C).
    18. Zhao, Siwei & Liu, Weidong & Zhu, Mengyuan & Ma, Yanfang & Li, Zongmin, 2021. "A priority-based multi-objective framework for water resources diversion and allocation in the middle route of the South-to-North Water Diversion Project," Socio-Economic Planning Sciences, Elsevier, vol. 78(C).
    19. Karrou, M. & Oweis, T., 2012. "Water and land productivities of wheat and food legumes with deficit supplemental irrigation in a Mediterranean environment," Agricultural Water Management, Elsevier, vol. 107(C), pages 94-103.
    20. Rudnick, D.R. & Irmak, S. & Djaman, K. & Sharma, V., 2017. "Impact of irrigation and nitrogen fertilizer rate on soil water trends and maize evapotranspiration during the vegetative and reproductive periods," Agricultural Water Management, Elsevier, vol. 191(C), pages 77-84.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:2:p:445-:d:198129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.