IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v30y2016i14d10.1007_s11269-016-1485-5.html
   My bibliography  Save this article

An Experimental Study on Evapotranspiration Data Assimilation Based on the Hydrological Model

Author

Listed:
  • Jian Yin

    (Institute of Geographic Science and Natural Resource Research, CAS)

  • Chesheng Zhan

    (Institute of Geographic Science and Natural Resource Research, CAS)

  • Wen Ye

    (Beijing Normal University)

Abstract

The accurate estimation of watershed evapotranspiration (ET) has been a research hotspot in the field of hydrology and water resources for a long time. This study aims to develop a new comprehensive method integrating the advantages of the hydrological model and remote sensing data for improving the daily ET processes simulation. For the purpose, a data assimilation (DA) approach was established on the basis of a physical-based hydrological model, Distributed Time Variant Gain Model (DTVGM). Due to the calculation of ET by using soil moisture recurrence relations in distributed hydrology model, ET was expressed by state variables, in combine with the remote sensing data of ET through a two-layer model, by using ensemble Kalman filter (EnKF) for ET assimilation and constructed a ET assimilation system based on DTVGM, obtained more accurate continuous time series values of ET. Applied in Beijing Shahe River Basin, the DA approach made the simulation shift towards the remote sensing results. According to the verification based on the measurement data of the flux station, the mean absolute percentage error of the DA-based ET was reduced from 25.8 to 8.2 % in No. 1 hydrological unit. The DA approach improved the ET simulation accuracy of hydrological model, and provides a new effective method for daily ET estimation.

Suggested Citation

  • Jian Yin & Chesheng Zhan & Wen Ye, 2016. "An Experimental Study on Evapotranspiration Data Assimilation Based on the Hydrological Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5263-5279, November.
  • Handle: RePEc:spr:waterr:v:30:y:2016:i:14:d:10.1007_s11269-016-1485-5
    DOI: 10.1007/s11269-016-1485-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-016-1485-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-016-1485-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martine Nyeko, 2015. "Hydrologic Modelling of Data Scarce Basin with SWAT Model: Capabilities and Limitations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(1), pages 81-94, January.
    2. Mohammad Valipour, 2014. "Use of average data of 181 synoptic stations for estimation of reference crop evapotranspiration by temperature-based methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 4237-4255, September.
    3. Ali Rahimikhoob, 2016. "Comparison of M5 Model Tree and Artificial Neural Network’s Methodologies in Modelling Daily Reference Evapotranspiration from NOAA Satellite Images," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 3063-3075, July.
    4. Peyman Abbaszadeh, 2016. "Improving Hydrological Process Modeling Using Optimized Threshold-Based Wavelet De-Noising Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1701-1721, March.
    5. Abdolreza Bahremand & Florimond Smedt, 2010. "Predictive Analysis and Simulation Uncertainty of a Distributed Hydrological Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(12), pages 2869-2880, September.
    6. Peyman Abbaszadeh, 2016. "Improving Hydrological Process Modeling Using Optimized Threshold-Based Wavelet De-Noising Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1701-1721, March.
    7. C. Cammalleri & G. Ciraolo & M. Minacapilli & G. Rallo, 2013. "Evapotranspiration from an Olive Orchard using Remote Sensing-Based Dual Crop Coefficient Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(14), pages 4877-4895, November.
    8. G. Comair & D. McKinney & D. Siegel, 2012. "Hydrology of the Jordan River Basin: Watershed Delineation, Precipitation and Evapotranspiration," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 4281-4293, November.
    9. Giorgos Papadavid & Diofantos Hadjimitsis & Leonidas Toulios & Silas Michaelides, 2013. "A Modified SEBAL Modeling Approach for Estimating Crop Evapotranspiration in Semi-arid Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(9), pages 3493-3506, July.
    10. Gift Dumedah, 2012. "Formulation of the Evolutionary-Based Data Assimilation, and its Implementation in Hydrological Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(13), pages 3853-3870, October.
    11. Ferdous Ahmed, 2012. "A Hydrologic Model of Kemptville Basin—Calibration and Extended Validation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2583-2604, July.
    12. Jinjiao Lian & Mingbin Huang, 2015. "Evapotranspiration Estimation for an Oasis Area in the Heihe River Basin Using Landsat-8 Images and the METRIC Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5157-5170, November.
    13. Taeuk Kang & Sangho Lee, 2014. "Modification of the SCE-UA to Include Constraints by Embedding an Adaptive Penalty Function and Application: Application Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(8), pages 2145-2159, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ying Zhang & Ling Zhang & Jinliang Hou & Juan Gu & Chunlin Huang, 2017. "Development of an Evapotranspiration Data Assimilation Technique for Streamflow Estimates: A Case Study in a Semi-Arid Region," Sustainability, MDPI, vol. 9(10), pages 1-21, September.
    2. Jesús Guerrero-Morales & Carlos R. Fonseca & Miguel A. Goméz-Albores & María Laura Sampedro-Rosas & Sonia Emilia Silva-Gómez, 2020. "Proportional Variation of Potential Groundwater Recharge as a Result of Climate Change and Land-Use: A Study Case in Mexico," Land, MDPI, vol. 9(10), pages 1-22, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weide Li & Demeng Kong & Jinran Wu, 2017. "A Novel Hybrid Model Based on Extreme Learning Machine, k-Nearest Neighbor Regression and Wavelet Denoising Applied to Short-Term Electric Load Forecasting," Energies, MDPI, vol. 10(5), pages 1-16, May.
    2. Johanna Engström & Peyman Abbaszadeh & David Keellings & Proloy Deb & Hamid Moradkhani, 2022. "Wildfires in the Arctic and tropical biomes: what is the relative role of climate?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1901-1914, November.
    3. Minacapilli, M. & Cammalleri, C. & Ciraolo, G. & Rallo, G. & Provenzano, G., 2016. "Using scintillometry to assess reference evapotranspiration methods and their impact on the water balance of olive groves," Agricultural Water Management, Elsevier, vol. 170(C), pages 49-60.
    4. Jinjiao Lian & Mingbin Huang, 2015. "Evapotranspiration Estimation for an Oasis Area in the Heihe River Basin Using Landsat-8 Images and the METRIC Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5157-5170, November.
    5. Jianzhong Zhou & Shuo Ouyang & Xuemin Wang & Lei Ye & Hao Wang, 2014. "Multi-Objective Parameter Calibration and Multi-Attribute Decision-Making: An Application to Conceptual Hydrological Model Calibration," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(3), pages 767-783, February.
    6. Jamil, Basharat & Akhtar, Naiem, 2017. "Comparison of empirical models to estimate monthly mean diffuse solar radiation from measured data: Case study for humid-subtropical climatic region of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1326-1342.
    7. Luis Santos Pereira, 2017. "Water, Agriculture and Food: Challenges and Issues," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2985-2999, August.
    8. Masoud Derakhshandeh & Mustafa Tombul, 2022. "Calibration of METRIC Modeling for Evapotranspiration Estimation Using Landsat 8 Imagery Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 315-339, January.
    9. Girón, I.F. & Corell, M. & Martín-Palomo, M.J. & Galindo, A. & Torrecillas, A. & Moreno, F. & Moriana, A., 2015. "Feasibility of trunk diameter fluctuations in the scheduling of regulated deficit irrigation for table olive trees without reference trees," Agricultural Water Management, Elsevier, vol. 161(C), pages 114-126.
    10. Rallo, Giovanni & González-Altozano, Pablo & Manzano-Juárez, Juan & Provenzano, Giuseppe, 2017. "Using field measurements and FAO-56 model to assess the eco-physiological response of citrus orchards under regulated deficit irrigation," Agricultural Water Management, Elsevier, vol. 180(PA), pages 136-147.
    11. Jie Zhao & Zongxue Xu & Vijay P. Singh & Depeng Zuo & Mo Li, 2016. "Sensitivity of Potential Evapotranspiration to Climate and Vegetation in a Water-Limited Basin at the Northern Edge of Tibetan Plateau," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4667-4680, October.
    12. Mohammad Rezaie-Balf & Zahra Zahmatkesh & Sungwon Kim, 2017. "Soft Computing Techniques for Rainfall-Runoff Simulation: Local Non–Parametric Paradigm vs. Model Classification Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 3843-3865, September.
    13. Mohammad Valipour, 2014. "Use of average data of 181 synoptic stations for estimation of reference crop evapotranspiration by temperature-based methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 4237-4255, September.
    14. Jinglin Zhang & Wei Zhang & Dongsheng Li & Xueliang Chen & Wei Zhang, 2022. "Regime Shifts in the Hexi Oases over the Past Three Decades: The Case of the Linze Oasis in the Middle Reaches of the Heihe River," Sustainability, MDPI, vol. 14(23), pages 1-13, December.
    15. Xiaoyang Tang & Deshan Tang & Fulin Zhang, 2024. "A Framework for Algorithmic Improvement to Mitigate the Effects of Equifinality in the Calibration of High-dimensional Parameters for Hydrological Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(1), pages 251-267, January.
    16. Mingyong Cai & Shengtian Yang & Hongjuan Zeng & Changsen Zhao & Shudong Wang, 2014. "A Distributed Hydrological Model Driven by Multi-Source Spatial Data and Its Application in the Ili River Basin of Central Asia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2851-2866, August.
    17. Nina Noreika & Tailin Li & David Zumr & Josef Krasa & Tomas Dostal & Raghavan Srinivasan, 2020. "Farm-Scale Biofuel Crop Adoption and Its Effects on In-Basin Water Balance," Sustainability, MDPI, vol. 12(24), pages 1-15, December.
    18. El Hajj, Marcel M. & Johansen, Kasper & Almashharawi, Samer K. & McCabe, Matthew F., 2023. "Water uptake rates over olive orchards using Sentinel-1 synthetic aperture radar data," Agricultural Water Management, Elsevier, vol. 288(C).
    19. Mohammad Taghi Sattari & Halit Apaydin & Shahaboddin Shamshirband, 2020. "Performance Evaluation of Deep Learning-Based Gated Recurrent Units (GRUs) and Tree-Based Models for Estimating ETo by Using Limited Meteorological Variables," Mathematics, MDPI, vol. 8(6), pages 1-18, June.
    20. Ali Rahimikhoob & Mohsen Hosseinzadeh, 2014. "Assessment of Blaney-Criddle Equation for Calculating Reference Evapotranspiration with NOAA/AVHRR Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 3365-3375, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:30:y:2016:i:14:d:10.1007_s11269-016-1485-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.