IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i23p6631-d290245.html
   My bibliography  Save this article

Potential Reconstruction Design of an Existing Townhouse in Washington DC for Approaching Net Zero Energy Building Goal

Author

Listed:
  • Sakdirat Kaewunruen

    (School of Engineering, University of Birmingham, Birmingham B15 2TT, UK)

  • Jessada Sresakoolchai

    (School of Engineering, University of Birmingham, Birmingham B15 2TT, UK)

  • Lalida Kerinnonta

    (School of Engineering, University of Birmingham, Birmingham B15 2TT, UK)

Abstract

The concept of the Net Zero Energy Building (NZEB) has received more interest from researchers due to global warming concerns. This paper proposes to illustrate optional solutions to allow existing buildings to achieve NZEB goals. The aim of this study is to investigate factors that can improve existing building performance to be in line with the NZEB concept and be more sustainable. An existing townhouse in Washington, DC was chosen as the research target to study how to retrofit or reconstruct the design of a building according to the NZEB concept. The methodology of this research is modeling an existing townhouse to assess the current situation and creating optional models for improving energy efficiency of the townhouse in Revit and utilising renewable energy technology for energy supply. This residential building was modeled in three versions to compare changes in energy performance including improving thermal efficiency of building envelope, increasing thickness of the wall, and installing smart windows (switchable windows). These solutions can reduce energy and cost by approximately 8.16%, 10.16%, and 14.65%, respectively, compared to the original townhouse. Two renewable energy technologies that were considered in this research were photovoltaic and wind systems. The methods can be applied to reconstruct other existing buildings in the future.

Suggested Citation

  • Sakdirat Kaewunruen & Jessada Sresakoolchai & Lalida Kerinnonta, 2019. "Potential Reconstruction Design of an Existing Townhouse in Washington DC for Approaching Net Zero Energy Building Goal," Sustainability, MDPI, vol. 11(23), pages 1-15, November.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:23:p:6631-:d:290245
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/23/6631/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/23/6631/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pierluigi De Berardinis & Marianna Rotilio & Luisa Capannolo, 2017. "Energy and Sustainable Strategies in the Renovation of Existing Buildings: An Italian Case Study," Sustainability, MDPI, vol. 9(8), pages 1-20, August.
    2. Sierra-Pérez, Jorge & Rodríguez-Soria, Beatriz & Boschmonart-Rives, Jesús & Gabarrell, Xavier, 2018. "Integrated life cycle assessment and thermodynamic simulation of a public building’s envelope renovation: Conventional vs. Passivhaus proposal," Applied Energy, Elsevier, vol. 212(C), pages 1510-1521.
    3. Chua, K.J. & Yang, W.M. & Wong, T.Z. & Ho, C.A., 2012. "Integrating renewable energy technologies to support building trigeneration – A multi-criteria analysis," Renewable Energy, Elsevier, vol. 41(C), pages 358-367.
    4. Sakdirat Kaewunruen & Panrawee Rungskunroch & Joshua Welsh, 2018. "A Digital-Twin Evaluation of Net Zero Energy Building for Existing Buildings," Sustainability, MDPI, vol. 11(1), pages 1-22, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jaromir Vrbka & Tomas Krulicky & Tomas Brabenec & Jan Hejda, 2020. "Determining the Increase in a Building’s Appreciation Rate Due to a Reconstruction," Sustainability, MDPI, vol. 12(18), pages 1-13, September.
    2. do Amaral, J.V.S. & dos Santos, C.H. & Montevechi, J.A.B. & de Queiroz, A.R., 2023. "Energy Digital Twin applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    3. Lauren Etxepare & Iñigo Leon & Maialen Sagarna & Iñigo Lizundia & Eneko Jokin Uranga, 2020. "Advanced Intervention Protocol in the Energy Rehabilitation of Heritage Buildings: A Miñones Barracks Case Study," Sustainability, MDPI, vol. 12(15), pages 1-33, August.
    4. Xinman Guo & Sunliang Cao & Yang Xu & Xiaolin Zhu, 2021. "The Feasibility of Using Zero-Emission Electric Boats to Enhance the Techno-Economic Performance of an Ocean-Energy-Supported Coastal Hotel Building," Energies, MDPI, vol. 14(24), pages 1-42, December.
    5. Sakdirat Kaewunruen & Shijie Peng & Olisa Phil-Ebosie, 2020. "Digital Twin Aided Sustainability and Vulnerability Audit for Subway Stations," Sustainability, MDPI, vol. 12(19), pages 1-17, September.
    6. Elżbieta Jadwiga Szymańska & Maria Kubacka & Joanna Woźniak & Jan Polaszczyk, 2022. "Analysis of Residential Buildings in Poland for Potential Energy Renovation toward Zero-Emission Construction," Energies, MDPI, vol. 15(24), pages 1-24, December.
    7. Sakdirat Kaewunruen & Jessada Sresakoolchai & Zhihao Zhou, 2020. "Sustainability-Based Lifecycle Management for Bridge Infrastructure Using 6D BIM," Sustainability, MDPI, vol. 12(6), pages 1-13, March.
    8. Kyung-Hwan Ji & Hyun-Kook Shin & Seungwoo Han & Jae-Hun Jo, 2020. "A Statistical Approach for Predicting Airtightness in Residential Units of Reinforced Concrete Apartment Buildings in Korea," Energies, MDPI, vol. 13(14), pages 1-20, July.
    9. Rafaela Bortolini & Raul Rodrigues & Hamidreza Alavi & Luisa Felix Dalla Vecchia & Núria Forcada, 2022. "Digital Twins’ Applications for Building Energy Efficiency: A Review," Energies, MDPI, vol. 15(19), pages 1-17, September.
    10. Sakdirat Kaewunruen & Jessada Sresakoolchai & Wentao Ma & Olisa Phil-Ebosie, 2021. "Digital Twin Aided Vulnerability Assessment and Risk-Based Maintenance Planning of Bridge Infrastructures Exposed to Extreme Conditions," Sustainability, MDPI, vol. 13(4), pages 1-18, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Yuan & Wang, Jiangjiang & Dong, Fuxiang & Qin, Yanbo & Ma, Zherui & Ma, Yanpeng & Li, Jianqiang, 2021. "Novel flexibility evaluation of hybrid combined cooling, heating and power system with an improved operation strategy," Applied Energy, Elsevier, vol. 300(C).
    2. Konečná, Eva & Teng, Sin Yong & Máša, Vítězslav, 2020. "New insights into the potential of the gas microturbine in microgrids and industrial applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Al Moussawi, Houssein & Fardoun, Farouk & Louahlia, Hasna, 2017. "Selection based on differences between cogeneration and trigeneration in various prime mover technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 491-511.
    4. Hossein Omrany & Karam M. Al-Obaidi & Amreen Husain & Amirhosein Ghaffarianhoseini, 2023. "Digital Twins in the Construction Industry: A Comprehensive Review of Current Implementations, Enabling Technologies, and Future Directions," Sustainability, MDPI, vol. 15(14), pages 1-26, July.
    5. Bon-Gang Hwang & Ming Shan, 2018. "Management Strategies and Innovations: Important Roles to Sustainable Construction," Sustainability, MDPI, vol. 10(3), pages 1-3, February.
    6. Jradi, M. & Riffat, S., 2014. "Tri-generation systems: Energy policies, prime movers, cooling technologies, configurations and operation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 396-415.
    7. Fabrizio M. Amoruso & Udo Dietrich & Thorsten Schuetze, 2019. "Integrated BIM-Parametric Workflow-Based Analysis of Daylight Improvement for Sustainable Renovation of an Exemplary Apartment in Seoul, Korea," Sustainability, MDPI, vol. 11(9), pages 1-29, May.
    8. Giuseppe Desogus & Emanuela Quaquero & Giulia Rubiu & Gianluca Gatto & Cristian Perra, 2021. "BIM and IoT Sensors Integration: A Framework for Consumption and Indoor Conditions Data Monitoring of Existing Buildings," Sustainability, MDPI, vol. 13(8), pages 1-22, April.
    9. Echarri-Iribarren, Victor & Echarri-Iribarren, Fernando & Rizo-Maestre, Carlos, 2019. "Ceramic panels versus aluminium in buildings: Energy consumption and environmental impact assessment with a new methodology," Applied Energy, Elsevier, vol. 233, pages 959-974.
    10. Strantzali, Eleni & Aravossis, Konstantinos, 2016. "Decision making in renewable energy investments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 885-898.
    11. Abdul Mujeebu, Muhammad & Alshamrani, Othman Subhi, 2016. "Prospects of energy conservation and management in buildings – The Saudi Arabian scenario versus global trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1647-1663.
    12. Ryszard Dachowski & Katarzyna Gałek, 2020. "Selection of the Best Method for Underpinning Foundations Using the PROMETHEE II Method," Sustainability, MDPI, vol. 12(13), pages 1-10, July.
    13. Mosaffa, A.H. & Farshi, L. Garousi, 2018. "Thermodynamic and economic assessments of a novel CCHP cycle utilizing low-temperature heat sources for domestic applications," Renewable Energy, Elsevier, vol. 120(C), pages 134-150.
    14. Sharafi, Masoud & ElMekkawy, Tarek Y. & Bibeau, Eric L., 2015. "Optimal design of hybrid renewable energy systems in buildings with low to high renewable energy ratio," Renewable Energy, Elsevier, vol. 83(C), pages 1026-1042.
    15. Maria Kozlovska & Stefan Petkanic & Frantisek Vranay & Dominik Vranay, 2023. "Enhancing Energy Efficiency and Building Performance through BEMS-BIM Integration," Energies, MDPI, vol. 16(17), pages 1-23, August.
    16. Kyung-Hwan Ji & Hyun-Kook Shin & Seungwoo Han & Jae-Hun Jo, 2020. "A Statistical Approach for Predicting Airtightness in Residential Units of Reinforced Concrete Apartment Buildings in Korea," Energies, MDPI, vol. 13(14), pages 1-20, July.
    17. Casey R. Corrado & Suzanne M. DeLong & Emily G. Holt & Edward Y. Hua & Andreas Tolk, 2022. "Combining Green Metrics and Digital Twins for Sustainability Planning and Governance of Smart Buildings and Cities," Sustainability, MDPI, vol. 14(20), pages 1-22, October.
    18. Michael, Jee Joe & S, Iniyan & Goic, Ranko, 2015. "Flat plate solar photovoltaic–thermal (PV/T) systems: A reference guide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 62-88.
    19. Youngduk Cho & Sanghyo Lee & Joosung Lee & Jaejun Kim, 2021. "Analysis of the Repair Time of Finishing Works Using a Probabilistic Approach for Efficient Residential Buildings Maintenance Strategies," Sustainability, MDPI, vol. 13(22), pages 1-17, November.
    20. Marko Nikolić & Boško Drobnjak & Irena Kuletin Ćulafić, 2020. "The Possibilities of Preservation, Regeneration and Presentation of Industrial Heritage: The Case of Old Mint “A.D.” on Belgrade Riverfront," Sustainability, MDPI, vol. 12(13), pages 1-36, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:23:p:6631-:d:290245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.