IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i8p4496-d538260.html
   My bibliography  Save this article

BIM and IoT Sensors Integration: A Framework for Consumption and Indoor Conditions Data Monitoring of Existing Buildings

Author

Listed:
  • Giuseppe Desogus

    (Department of Civil Engineering Environmental and Architecture (DICAAR), University of Cagliari, 09124 Cagliari, Italy)

  • Emanuela Quaquero

    (Department of Civil Engineering Environmental and Architecture (DICAAR), University of Cagliari, 09124 Cagliari, Italy)

  • Giulia Rubiu

    (Department of Civil Engineering Environmental and Architecture (DICAAR), University of Cagliari, 09124 Cagliari, Italy)

  • Gianluca Gatto

    (Department of Electrical and Electronic Engineering (DIEE), University of Cagliari, 09123 Cagliari, Italy)

  • Cristian Perra

    (Department of Electrical and Electronic Engineering (DIEE), University of Cagliari, 09123 Cagliari, Italy)

Abstract

The low accessibility to the information regarding buildings current performances causes deep difficulties in planning appropriate interventions. Internet of Things (IoT) sensors make available a high quantity of data on energy consumptions and indoor conditions of an existing building that can drive the choice of energy retrofit interventions. Moreover, the current developments in the topic of the digital twin are leading the diffusion of Building Information Modeling (BIM) methods and tools that can provide valid support to manage all data and information for the retrofit process. This paper shows the aim and the findings of research focused on testing the integrated use of BIM methodology and IoT systems. A common data platform for the visualization of building indoor conditions (e.g., temperature, luminance etc.) and of energy consumption parameters was carried out. This platform, tested on a case study located in Italy, is developed with the integration of low-cost IoT sensors and the Revit model. To obtain a dynamic and automated exchange of data between the sensors and the BIM model, the Revit software was integrated with the Dynamo visual programming platform and with a specific Application Programming Interface (API). It is an easy and straightforward tool that can provide building managers with real-time data and information about the energy consumption and the indoor conditions of buildings, but also allows for viewing of the historical sensor data table and creating graphical historical sensor data. Furthermore, the BIM model allows the management of other useful information about the building, such as dimensional data, functions, characteristics of the components of the building, maintenance status etc., which are essential for a much more conscious, effective and accurate management of the building and for defining the most suitable retrofit scenarios.

Suggested Citation

  • Giuseppe Desogus & Emanuela Quaquero & Giulia Rubiu & Gianluca Gatto & Cristian Perra, 2021. "BIM and IoT Sensors Integration: A Framework for Consumption and Indoor Conditions Data Monitoring of Existing Buildings," Sustainability, MDPI, vol. 13(8), pages 1-22, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4496-:d:538260
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/8/4496/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/8/4496/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fabrizio M. Amoruso & Udo Dietrich & Thorsten Schuetze, 2019. "Indoor Thermal Comfort Improvement through the Integrated BIM-Parametric Workflow-Based Sustainable Renovation of an Exemplary Apartment in Seoul, Korea," Sustainability, MDPI, vol. 11(14), pages 1-31, July.
    2. Fabrizio M. Amoruso & Udo Dietrich & Thorsten Schuetze, 2019. "Integrated BIM-Parametric Workflow-Based Analysis of Daylight Improvement for Sustainable Renovation of an Exemplary Apartment in Seoul, Korea," Sustainability, MDPI, vol. 11(9), pages 1-29, May.
    3. Patricia Tzortzopoulos & Ling Ma & João Soliman Junior & Lauri Koskela, 2019. "Evaluating Social Housing Retrofit Options to Support Clients’ Decision Making—SIMPLER BIM Protocol," Sustainability, MDPI, vol. 11(9), pages 1-21, April.
    4. Sakdirat Kaewunruen & Panrawee Rungskunroch & Joshua Welsh, 2018. "A Digital-Twin Evaluation of Net Zero Energy Building for Existing Buildings," Sustainability, MDPI, vol. 11(1), pages 1-22, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio J. Aguilar & María L. de la Hoz-Torres & Diego P. Ruiz & Mª Dolores Martínez-Aires, 2022. "Monitoring and Assessment of Indoor Environmental Conditions in Educational Building Using Building Information Modelling Methodology," IJERPH, MDPI, vol. 19(21), pages 1-21, October.
    2. Amit Kumar & Milad Moradpour & Michele Losito & Wulf-Toke Franke & Suganthi Ramasamy & Roberto Baccoli & Gianluca Gatto, 2022. "Wide Band Gap Devices and Their Application in Power Electronics," Energies, MDPI, vol. 15(23), pages 1, December.
    3. Joaquim Amândio Azevedo & Filipe Edgar Santos, 2021. "A More Efficient Technique to Power Home Monitoring Systems Using Controlled Battery Charging," Energies, MDPI, vol. 14(13), pages 1-16, June.
    4. Tingchen Fang & Yiming Zhao & Jian Gong & Feiliang Wang & Jian Yang, 2021. "Investigation on Maintenance Technology of Large-Scale Public Venues Based on BIM Technology," Sustainability, MDPI, vol. 13(14), pages 1-18, July.
    5. Ágota Bányai & Tamás Bányai, 2022. "Real-Time Maintenance Policy Optimization in Manufacturing Systems: An Energy Efficiency and Emission-Based Approach," Sustainability, MDPI, vol. 14(17), pages 1-15, August.
    6. Ofelia Vera-Piazzini & Massimiliano Scarpa & Fabio Peron, 2022. "Building Energy Simulation and Monitoring: A Review of Graphical Data Representation," Energies, MDPI, vol. 16(1), pages 1-26, December.
    7. Habib Sadri & Ibrahim Yitmen & Lavinia Chiara Tagliabue & Florian Westphal & Algan Tezel & Afshin Taheri & Goran Sibenik, 2023. "Integration of Blockchain and Digital Twins in the Smart Built Environment Adopting Disruptive Technologies—A Systematic Review," Sustainability, MDPI, vol. 15(4), pages 1-46, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanqiu Cui & Simeng Li & Chunlu Liu & Ninghan Sun, 2020. "Creation and Diversified Applications of Plane Module Libraries for Prefabricated Houses Based on BIM," Sustainability, MDPI, vol. 12(2), pages 1-17, January.
    2. Ruwini Edirisinghe & Zelinna Pablo & Chimay Anumba & Saratu Tereno, 2021. "An Actor–Network Approach to Developing a Life Cycle BIM Maturity Model (LCBMM)," Sustainability, MDPI, vol. 13(23), pages 1-25, November.
    3. Maria Conceição da Costa Silva & Alyx Diêgo Oliveira Silva & Emilia Rahnemay Kohlman Rabbani & Luciana H. Alencar & George da Mota Passos Neto & João Pedro Couto & Rodolfo Valdes-Vasquez, 2022. "Guidelines for the Implementation of BIM for Post-Occupancy Management of Social Housing in Brazil," Energies, MDPI, vol. 15(18), pages 1-20, September.
    4. Jungwon Yoon & Sanghyun Bae, 2020. "Performance Evaluation and Design of Thermo-Responsive SMP Shading Prototypes," Sustainability, MDPI, vol. 12(11), pages 1-35, May.
    5. Fabrizio M. Amoruso & Udo Dietrich & Thorsten Schuetze, 2019. "Indoor Thermal Comfort Improvement through the Integrated BIM-Parametric Workflow-Based Sustainable Renovation of an Exemplary Apartment in Seoul, Korea," Sustainability, MDPI, vol. 11(14), pages 1-31, July.
    6. Hossein Omrany & Karam M. Al-Obaidi & Amreen Husain & Amirhosein Ghaffarianhoseini, 2023. "Digital Twins in the Construction Industry: A Comprehensive Review of Current Implementations, Enabling Technologies, and Future Directions," Sustainability, MDPI, vol. 15(14), pages 1-26, July.
    7. Yali Chen & Dan Huang & Zhen Liu & Mohamed Osmani & Peter Demian, 2022. "Construction 4.0, Industry 4.0, and Building Information Modeling (BIM) for Sustainable Building Development within the Smart City," Sustainability, MDPI, vol. 14(16), pages 1-37, August.
    8. Fabrizio M. Amoruso & Udo Dietrich & Thorsten Schuetze, 2019. "Integrated BIM-Parametric Workflow-Based Analysis of Daylight Improvement for Sustainable Renovation of an Exemplary Apartment in Seoul, Korea," Sustainability, MDPI, vol. 11(9), pages 1-29, May.
    9. Ibukun O. Famakin & Idris Othman & Ahmed Farouk Kineber & Ayodeji Emmanuel Oke & Oludolapo Ibrahim Olanrewaju & Mohammed Magdy Hamed & Taiwo Matthew Olayemi, 2023. "Building Information Modeling Execution Drivers for Sustainable Building Developments," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    10. Sakdirat Kaewunruen & Jessada Sresakoolchai & Lalida Kerinnonta, 2019. "Potential Reconstruction Design of an Existing Townhouse in Washington DC for Approaching Net Zero Energy Building Goal," Sustainability, MDPI, vol. 11(23), pages 1-15, November.
    11. Siham El Yamani & Rafika Hajji & Gilles-Antoine Nys & Mohamed Ettarid & Roland Billen, 2021. "3D Variables Requirements for Property Valuation Modeling Based on the Integration of BIM and CIM," Sustainability, MDPI, vol. 13(5), pages 1-22, March.
    12. Maria Kozlovska & Stefan Petkanic & Frantisek Vranay & Dominik Vranay, 2023. "Enhancing Energy Efficiency and Building Performance through BEMS-BIM Integration," Energies, MDPI, vol. 16(17), pages 1-23, August.
    13. Kyung-Hwan Ji & Hyun-Kook Shin & Seungwoo Han & Jae-Hun Jo, 2020. "A Statistical Approach for Predicting Airtightness in Residential Units of Reinforced Concrete Apartment Buildings in Korea," Energies, MDPI, vol. 13(14), pages 1-20, July.
    14. Casey R. Corrado & Suzanne M. DeLong & Emily G. Holt & Edward Y. Hua & Andreas Tolk, 2022. "Combining Green Metrics and Digital Twins for Sustainability Planning and Governance of Smart Buildings and Cities," Sustainability, MDPI, vol. 14(20), pages 1-22, October.
    15. Youngduk Cho & Sanghyo Lee & Joosung Lee & Jaejun Kim, 2021. "Analysis of the Repair Time of Finishing Works Using a Probabilistic Approach for Efficient Residential Buildings Maintenance Strategies," Sustainability, MDPI, vol. 13(22), pages 1-17, November.
    16. Francisco Javier Montiel-Santiago & Manuel Jesús Hermoso-Orzáez & Julio Terrados-Cepeda, 2020. "Sustainability and Energy Efficiency: BIM 6D. Study of the BIM Methodology Applied to Hospital Buildings. Value of Interior Lighting and Daylight in Energy Simulation," Sustainability, MDPI, vol. 12(14), pages 1-29, July.
    17. Bianca Goia & Tudor Cioara & Ionut Anghel, 2022. "Virtual Power Plant Optimization in Smart Grids: A Narrative Review," Future Internet, MDPI, vol. 14(5), pages 1-22, April.
    18. Sakdirat Kaewunruen & Jessada Sresakoolchai & Wentao Ma & Olisa Phil-Ebosie, 2021. "Digital Twin Aided Vulnerability Assessment and Risk-Based Maintenance Planning of Bridge Infrastructures Exposed to Extreme Conditions," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    19. Meijiao Song & Jun Cai & Yisi Xue, 2023. "From Technological Sustainability to Social Sustainability: An Analysis of Hotspots and Trends in Residential Design Evaluation," Sustainability, MDPI, vol. 15(13), pages 1-19, June.
    20. Ki Pyung Kim & Rob Freda & Tan Hai Dang Nguyen, 2020. "Building Information Modelling Feasibility Study for Building Surveying," Sustainability, MDPI, vol. 12(11), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4496-:d:538260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.