IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i19p5308-d270923.html
   My bibliography  Save this article

The Impact of Climate Change and Human Activity on Spatiotemporal Patterns of Multiple Cropping Index in South West China

Author

Listed:
  • Chuangjuan Zhang

    (State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation, Northwest Agriculture and Forestry University, Yangling 712100, China
    These two authors contributed equally.)

  • Hongming He

    (State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation, Northwest Agriculture and Forestry University, Yangling 712100, China
    Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China
    School of Geographic Sciences, East China Normal University, Shanghai 210062, China)

  • Ali Mokhtar

    (State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation, Northwest Agriculture and Forestry University, Yangling 712100, China
    Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China
    Department of Agricultural Engineering, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
    These two authors contributed equally.)

Abstract

Agricultural lands are very sensitive to climate and human activity changes, which result in variations in regional agricultural resources and decreased production of total grain output and increased difficulty in producing grain yields. Multiple cropping is one of the simplest ways to increase grain production. The research aims is to analyze the spatial and temporal variations in the multiple cropping index and study the factors that influence the multiple cropping index. Based on the maximum multiple cropping index (MCI) and a “heat-precipitation” quantitative relation model, we analyzed the theoretical potential multiple cropping index (PMCI) and the spatiotemporal changes in the potential increase in the multiple cropping index (PIMCI). Our results are as follows: The MCI was significantly higher in the eastern region than in the western region and higher in the central region than in the northern and southern regions; in Yunnan Province, it showed a fluctuating downwards trend; further, it exhibited sudden declines from 2004 to 2006 and from 2012 to 2014 in Guizhou, while it exhibited an increasing trend in Sichuan Province. The PMCIs were the highest in the eastern and southern regions, especially in eastern Sichuan Province, and the PIMCI was significantly higher in Yunnan Province than in Guizhou and Sichuan. Climate change, human activities, and terrain had significant influences on the MCI changes in southwest China, especially the temperature change, which was the key factor affecting the MCI changes. The dominant land use types in southwest China were forest (46%), grass (28%), and farmland (23%) during 1980–2015. Therefore, the adjustment of the planting structure in different terrain areas according to the temperature changes has become the main strategy to promote the sustainable development of cultivated land resources in the region, further, the results would help implement the plan to increase grain production capacity in southwest China.

Suggested Citation

  • Chuangjuan Zhang & Hongming He & Ali Mokhtar, 2019. "The Impact of Climate Change and Human Activity on Spatiotemporal Patterns of Multiple Cropping Index in South West China," Sustainability, MDPI, vol. 11(19), pages 1-21, September.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:19:p:5308-:d:270923
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/19/5308/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/19/5308/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hualin Xie & Peng Wang & Guanrong Yao, 2014. "Exploring the Dynamic Mechanisms of Farmland Abandonment Based on a Spatially Explicit Economic Model for Environmental Sustainability: A Case Study in Jiangxi Province, China," Sustainability, MDPI, vol. 6(3), pages 1-23, March.
    2. Yaohuan Huang & Chen Xu & Haijun Yang & Jianhua Wang & Dong Jiang & Chuanpeng Zhao, 2015. "Temporal and Spatial Variability of Droughts in Southwest China from 1961 to 2012," Sustainability, MDPI, vol. 7(10), pages 1-13, October.
    3. Wu, Wenbin & Yu, Qiangyi & You, Liangzhi & Chen, Kevin & Tang, Huajun & Liu, Jianguo, 2018. "Global cropping intensity gaps: Increasing food production without cropland expansion," Land Use Policy, Elsevier, vol. 76(C), pages 515-525.
    4. Erb, Karl-Heinz & Haberl, Helmut & Jepsen, Martin Rudbeck & Kuemmerle, Tobias & Lindner, Marcus & Müller, Daniel & Verburg, Peter H & Reenberg, Anette, 2013. "A conceptual framework for analysing and measuring land-use intensity," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 5(5), pages 464-470.
    5. Meijia Xiao & Qingwen Zhang & Liqin Qu & Hafiz Athar Hussain & Yuequn Dong & Li Zheng, 2019. "Spatiotemporal Changes and the Driving Forces of Sloping Farmland Areas in the Sichuan Region," Sustainability, MDPI, vol. 11(3), pages 1-16, February.
    6. Dalrymple, Dana G., 1971. "Survey of Multiple Cropping in Less Developed Nations," Foreign Agricultural Economic Report (FAER) 145628, United States Department of Agriculture, Economic Research Service.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Keke Li & Bofeng Cai & Zhen Wang, 2022. "Accessing the Climate Change Impacts in China through a Literature Mapping," IJERPH, MDPI, vol. 19(20), pages 1-14, October.
    2. Tingting Li & Yanfei Wang & Changquan Liu & Shuangshuang Tu, 2021. "Research on Identification of Multiple Cropping Index of Farmland and Regional Optimization Scheme in China Based on NDVI Data," Land, MDPI, vol. 10(8), pages 1-16, August.
    3. Yaxin Shi & Yishao Shi, 2020. "Spatio-Temporal Variation Characteristics and Driving Forces of Farmland Shrinkage in Four Metropolises in East Asia," Sustainability, MDPI, vol. 12(3), pages 1-26, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Ge & Yu, Qiangyi & Zhou, Qingbo & Wang, Cong & Wu, Wenbin, 2023. "From multiple cropping frequency to multiple cropping system: A new perspective for the characterization of cropland use intensity," Agricultural Systems, Elsevier, vol. 204(C).
    2. Xiang, Mingtao & Yu, Qiangyi & Li, Yan & Shi, Zhou & Wu, Wenbin, 2022. "Increasing multiple cropping for land use intensification: The role of crop choice," Land Use Policy, Elsevier, vol. 112(C).
    3. Yu, Qiangyi & Xiang, Mingtao & Sun, Zhanli & Wu, Wenbin, 2021. "The complexity of measuring cropland use intensity: An empirical study," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 192.
    4. You, Heyuan & Hu, Xiaowei & Wu, Yizhou, 2018. "Farmland use intensity changes in response to rural transition in Zhejiang province, China," Land Use Policy, Elsevier, vol. 79(C), pages 350-361.
    5. Jänicke, Clemens & Goddard, Adam & Stein, Susanne & Steinmann, Horst-Henning & Lakes, Tobia & Nendel, Claas & Müller, Daniel, 2022. "Field-level land-use data reveal heterogeneous crop sequences with distinct regional differences in Germany," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 141, pages 1-12.
    6. Castro, P. & Pedroso, R. & Lautenbach, S. & Vicens, R., 2020. "Farmland abandonment in Rio de Janeiro: Underlying and contributory causes of an announced development," Land Use Policy, Elsevier, vol. 95(C).
    7. Luo, Tao & Khoshnevisan, Benyamin & Huang, Ruyi & Chen, Qiu & Mei, Zili & Pan, Junting & Liu, Hongbin, 2020. "Analysis of revolution in decentralized biogas facilities caused by transition in Chinese rural areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    8. Guo Chen & Amy K Glasmeier & Min Zhang & Yang Shao, 2016. "Urbanization and Income Inequality in Post-Reform China: A Causal Analysis Based on Time Series Data," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-16, July.
    9. Lucie Kupková & Ivan Bičík & Leoš Jeleček, 2021. "At the Crossroads of European Landscape Changes: Major Processes of Landscape Change in Czechia since the Middle of the 19th Century and Their Driving Forces," Land, MDPI, vol. 10(1), pages 1-25, January.
    10. Wojciech Sroka & Jaroslaw Mikolajczyk & Tomasz Wojewodzic & Boguslawa Kwoczynska, 2018. "Agricultural Land vs. Urbanisation in Chosen Polish Metropolitan Areas: A Spatial Analysis Based on Regression Trees," Sustainability, MDPI, vol. 10(3), pages 1-22, March.
    11. Carlos Durán Gabela & Bernardo Trejos & Pablo Lamiño Jaramillo & Amy Boren-Alpízar, 2022. "Sustainable Agriculture: Relationship between Knowledge and Attitude among University Students," Sustainability, MDPI, vol. 14(23), pages 1-11, November.
    12. Zhongen Niu & Huimin Yan & Fang Liu, 2020. "Decreasing Cropping Intensity Dominated the Negative Trend of Cropland Productivity in Southern China in 2000–2015," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    13. Stephanie D. Maier & Jan Paul Lindner & Javier Francisco, 2019. "Conceptual Framework for Biodiversity Assessments in Global Value Chains," Sustainability, MDPI, vol. 11(7), pages 1-34, March.
    14. Han Li & Wei Song, 2021. "Cropland Abandonment and Influencing Factors in Chongqing, China," Land, MDPI, vol. 10(11), pages 1-21, November.
    15. Xiaowei Yao & Ting Luo & Yingjun Xu & Wanxu Chen & Jie Zeng, 2022. "Prediction of Spatiotemporal Changes in Sloping Cropland in the Middle Reaches of the Yangtze River Region under Different Scenarios," IJERPH, MDPI, vol. 20(1), pages 1-22, December.
    16. Hualin Xie & Lingjuan Cheng & Tiangui Lv, 2017. "Factors Influencing Farmer Willingness to Fallow Winter Wheat and Ecological Compensation Standards in a Groundwater Funnel Area in Hengshui, Hebei Province, China," Sustainability, MDPI, vol. 9(5), pages 1-18, May.
    17. Ping Xue & Xinru Han & Yongchun Wang & Xiudong Wang, 2022. "Can Agricultural Machinery Harvesting Services Reduce Cropland Abandonment? Evidence from Rural China," Agriculture, MDPI, vol. 12(7), pages 1-15, June.
    18. Pritchard, Rose & Ryan, Casey M. & Grundy, Isla & van der Horst, Dan, 2018. "Human Appropriation of Net Primary Productivity and Rural Livelihoods: Findings From Six Villages in Zimbabwe," Ecological Economics, Elsevier, vol. 146(C), pages 115-124.
    19. Jian-Zhou Wei & Kai Zheng & Feng Zhang & Chao Fang & Yu-Yu Zhou & Xue-Cao Li & Feng-Min Li & Jian-Sheng Ye, 2019. "Migration of Rural Residents to Urban Areas Drives Grassland Vegetation Increase in China’s Loess Plateau," Sustainability, MDPI, vol. 11(23), pages 1-18, November.
    20. Leng Liu & Bo Liu & Wei Song & Hao Yu, 2023. "The Relationship between Rural Sustainability and Land Use: A Bibliometric Review," Land, MDPI, vol. 12(8), pages 1-25, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:19:p:5308-:d:270923. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.