IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i19p5293-d270801.html
   My bibliography  Save this article

Green Urbanism Embedded in TOD for Urban Built Environment Planning and Design

Author

Listed:
  • Wei Huang

    (College of Real Estate, Beijing Normal University, Zhuhai 519085, China)

  • Wann-Ming Wey

    (Department of Real Estate and Built Environment, National Taipei University, New Taipei 23741, Taiwan)

Abstract

Even though the TOD (Transit-Oriented Development) concepts contribute great innovations to our next-generation metropolis, their means and focusing are primarily on the sustainable transportation dimension. It is debatable that the development mode advocated by TOD seems to lack relative considerations of both the ecological and environmental dimensions. Consequently, to achieve a better urban life, our urban planning and design should incorporate the consideration of peripheral areas that have not been further valued in the past, such as ecology diversity, natural energy recycling or reuse, and livable habitat, rather than just focusing on the sustainable transportation dimension of conventional TOD. This study thus explores and summarizes the design criteria of Green TOD through literature review and obtains the evaluation criteria via experts. Furthermore, through the FDT (fuzzy Delphi technique) method, the evaluation criteria from the expert questionnaire are screened. In turn, more important evaluation criteria are obtained objectively. Based on the screening results of FDT, we adopt the HOQ (house of quality) model integrated by FANP (fuzzy analytic network process) and QFD (quality function deployment) to allocate the weighting for each criterion scientifically. Finally, the evaluation results and hybrid decision model provided in this study can be used as an initial reference for improving the planning and design of today’s built environment. We believe that these pioneered attempts will help us in attaining our ultimate pursuit of urban sustainability and livability.

Suggested Citation

  • Wei Huang & Wann-Ming Wey, 2019. "Green Urbanism Embedded in TOD for Urban Built Environment Planning and Design," Sustainability, MDPI, vol. 11(19), pages 1-14, September.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:19:p:5293-:d:270801
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/19/5293/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/19/5293/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:cdl:itsrrp:qt20q8993s is not listed on IDEAS
    2. Luis Bettencourt & Geoffrey West, 2010. "A unified theory of urban living," Nature, Nature, vol. 467(7318), pages 912-913, October.
    3. Jhong-You Huang & Wann-Ming Wey, 2019. "Application of Big Data and Analytic Network Process for the Adaptive Reuse Strategies of School Land," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 142(3), pages 1075-1102, April.
    4. Sehatzadeh, Bahareh & Noland, Robert B. & Weiner, Marc D., 2011. "Walking frequency, cars, dogs, and the built environment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(8), pages 741-754, October.
    5. Wann-Ming Wey, 2018. "A Commentary on Sustainably Built Environments and Urban Growth Management," Sustainability, MDPI, vol. 10(11), pages 1-5, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhenyu Mei & Liang Kong & Wenchao Zheng, 2020. "TOD Parking Demand Models for New Urban Areas in China," Sustainability, MDPI, vol. 12(20), pages 1-23, October.
    2. Zheng, Lingwei & Austwick, Martin Zaltz, 2023. "Classifying station areas in greater Manchester using the node-place-design model: A comparative analysis with system centrality and green space coverage," Journal of Transport Geography, Elsevier, vol. 112(C).
    3. Mooza Al-Mohannadi & Reem Awwaad & Raffaello Furlan & Michael Grosvald & Rashid Al-Matwi & Rima J. Isaifan, 2023. "Sustainable Status Assessment of the Transit-Oriented Development in Doha’s Education City," Sustainability, MDPI, vol. 15(3), pages 1-20, January.
    4. Yingqun Zhang & Rui Song & Rob van Nes & Shiwei He & Weichuan Yin, 2019. "Identifying Urban Structure Based on Transit-Oriented Development," Sustainability, MDPI, vol. 11(24), pages 1-21, December.
    5. Qiaoling Fang & Tomo Inoue & Dongqi Li & Qiang Liu & Jian Ma, 2023. "Transit-Oriented Development and Sustainable Cities: A Visual Analysis of the Literature Based on CiteSpace and VOSviewer," Sustainability, MDPI, vol. 15(10), pages 1-18, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saul Estrin & Yuan Hu & Daniel Shapiro & Peng Zhang, 2024. "Agglomeration costs limit sustainable innovation in cities in developing economies," PLOS ONE, Public Library of Science, vol. 19(11), pages 1-24, November.
    2. Huang, Siyu & Shi, Yi & Chen, Qinghua & Li, Xiaomeng, 2022. "The growth path of high-tech industries: Statistical laws and evolution demands," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    3. Joao Meirelles & Camilo Rodrigues Neto & Fernando Fagundes Ferreira & Fabiano Lemes Ribeiro & Claudia Rebeca Binder, 2018. "Evolution of urban scaling: Evidence from Brazil," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-15, October.
    4. A. Haven Kiers & Billy Krimmel & Caroline Larsen-Bircher & Kate Hayes & Ash Zemenick & Julia Michaels, 2022. "Different Jargon, Same Goals: Collaborations between Landscape Architects and Ecologists to Maximize Biodiversity in Urban Lawn Conversions," Land, MDPI, vol. 11(10), pages 1-18, September.
    5. Varga, Levente & Tóth, Géza & Néda, Zoltán, 2017. "An improved radiation model and its applicability for understanding commuting patterns in Hungary," MPRA Paper 76806, University Library of Munich, Germany.
    6. Brinkley, Catherine & Raj, Subhashni, 2022. "Perfusion and urban thickness: The shape of cities," Land Use Policy, Elsevier, vol. 115(C).
    7. Sebastián Bustos & Charles Gomez & Ricardo Hausmann & César A Hidalgo, 2012. "The Dynamics of Nestedness Predicts the Evolution of Industrial Ecosystems," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-8, November.
    8. Peña, Guillermo & Puente-Ajovín, Miguel & Ramos, Arturo & Sanz-Gracia, Fernando, 2022. "Log-growth rates of CO2: An empirical analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    9. Ermal Shpuza, 2017. "Relative size measures of urban form based on allometric subtraction," Environment and Planning B, , vol. 44(1), pages 141-159, January.
    10. Xu, Gang & Xu, Zhibang & Gu, Yanyan & Lei, Weiqian & Pan, Yupiao & Liu, Jie & Jiao, Limin, 2020. "Scaling laws in intra-urban systems and over time at the district level in Shanghai, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    11. Law, Teik Hua & Hamid, Hussain & Goh, Chia Ning, 2015. "The motorcycle to passenger car ownership ratio and economic growth: A cross-country analysis," Journal of Transport Geography, Elsevier, vol. 46(C), pages 122-128.
    12. Christian Düben & Melanie Krause, 2021. "Population, light, and the size distribution of cities," Journal of Regional Science, Wiley Blackwell, vol. 61(1), pages 189-211, January.
    13. Pierre-Alexandre Balland & Cristian Jara-Figueroa & Sergio G. Petralia & Mathieu P. A. Steijn & David L. Rigby & César A. Hidalgo, 2020. "Complex economic activities concentrate in large cities," Nature Human Behaviour, Nature, vol. 4(3), pages 248-254, March.
    14. Hye Kyung Lim & Jaan-Henrik Kain, 2016. "Compact Cities Are Complex, Intense and Diverse but: Can We Design Such Emergent Urban Properties?," Urban Planning, Cogitatio Press, vol. 1(1), pages 95-113.
    15. Naudé, Wim, 2024. "Entrepreneurship Is Dangerously Obsessed with Growth and Incompatible with Current Visions of a Post-growth Society," IZA Discussion Papers 17158, Institute of Labor Economics (IZA).
    16. Melissa R. McHale & Steward T.A. Pickett & Olga Barbosa & David N. Bunn & Mary L. Cadenasso & Daniel L. Childers & Meredith Gartin & George R. Hess & David M. Iwaniec & Timon McPhearson & M. Nils Pete, 2015. "The New Global Urban Realm: Complex, Connected, Diffuse, and Diverse Social-Ecological Systems," Sustainability, MDPI, vol. 7(5), pages 1-30, April.
    17. Jing-Wei Liu & Che-Wei Chang & Yao-Ji Wang & Yi-Hui Liu, 2022. "Constructing a Decision Model for Health Club Members to Purchase Coaching Programs during the COVID-19 Epidemic," Sustainability, MDPI, vol. 14(20), pages 1-13, October.
    18. Krzysztof Cebrat & Maciej Sobczyński, 2016. "Scaling Laws in City Growth: Setting Limitations with Self-Organizing Maps," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-11, December.
    19. Tao, Yong & Lin, Li & Wang, Hanjie & Hou, Chen, 2023. "Superlinear growth and the fossil fuel energy sustainability dilemma: Evidence from six continents," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 39-51.
    20. Ying Li & Robert J. S. Beeton & Xiaofeng Zhao & Yeting Fan & Qingke Yang & Jianbao Li & Linlin Ding, 2024. "Advancing urban sustainability transitions: A framework for understanding urban complexity and enhancing integrative transformations," Humanities and Social Sciences Communications, Palgrave Macmillan, vol. 11(1), pages 1-14, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:19:p:5293-:d:270801. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.