IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i17p4764-d262781.html
   My bibliography  Save this article

Water Quality Sustainability Evaluation under Uncertainty: A Multi-Scenario Analysis Based on Bayesian Networks

Author

Listed:
  • Anna Sperotto

    (Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici (Fondazione CMCC), c/o via Augusto Imperatore 16, 73100 Lecce, Italy
    Department of Environmental Sciences, Informatics and Statistics, University Ca’ Foscari Venice, 30123 Venezia, Italy)

  • Josè Luis Molina

    (High Polytechnic School of Engineering, University of Salamanca, Av. de los Hornos Caleros, 50, 05003 Ávila, Spain)

  • Silvia Torresan

    (Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici (Fondazione CMCC), c/o via Augusto Imperatore 16, 73100 Lecce, Italy)

  • Andrea Critto

    (Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici (Fondazione CMCC), c/o via Augusto Imperatore 16, 73100 Lecce, Italy
    Department of Environmental Sciences, Informatics and Statistics, University Ca’ Foscari Venice, 30123 Venezia, Italy)

  • Manuel Pulido-Velazquez

    (Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, 46022 València, Spain)

  • Antonio Marcomini

    (Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici (Fondazione CMCC), c/o via Augusto Imperatore 16, 73100 Lecce, Italy
    Department of Environmental Sciences, Informatics and Statistics, University Ca’ Foscari Venice, 30123 Venezia, Italy)

Abstract

With increasing evidence of climate change affecting the quality of water resources, there is the need to assess the potential impacts of future climate change scenarios on water systems to ensure their long-term sustainability. The study assesses the uncertainty in the hydrological responses of the Zero river basin (northern Italy) generated by the adoption of an ensemble of climate projections from 10 different combinations of a global climate model (GCM)–regional climate model (RCM) under two emission scenarios (representative concentration pathways (RCPs) 4.5 and 8.5). Bayesian networks (BNs) are used to analyze the projected changes in nutrient loadings (NO 3 , NH 4 , PO 4 ) in mid- (2041–2070) and long-term (2071–2100) periods with respect to the baseline (1983–2012). BN outputs show good confidence that, across considered scenarios and periods, nutrient loadings will increase, especially during autumn and winter seasons. Most models agree in projecting a high probability of an increase in nutrient loadings with respect to current conditions. In summer and spring, instead, the large variability between different GCM–RCM results makes it impossible to identify a univocal direction of change. Results suggest that adaptive water resource planning should be based on multi-model ensemble approaches as they are particularly useful for narrowing the spectrum of plausible impacts and uncertainties on water resources.

Suggested Citation

  • Anna Sperotto & Josè Luis Molina & Silvia Torresan & Andrea Critto & Manuel Pulido-Velazquez & Antonio Marcomini, 2019. "Water Quality Sustainability Evaluation under Uncertainty: A Multi-Scenario Analysis Based on Bayesian Networks," Sustainability, MDPI, vol. 11(17), pages 1-34, August.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:17:p:4764-:d:262781
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/17/4764/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/17/4764/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marcot, Bruce G., 2012. "Metrics for evaluating performance and uncertainty of Bayesian network models," Ecological Modelling, Elsevier, vol. 230(C), pages 50-62.
    2. Yiannis Panagopoulos & Christos Makropoulos & Maria Mimikou, 2011. "Diffuse Surface Water Pollution: Driving Factors for Different Geoclimatic Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3635-3660, November.
    3. Uusitalo, Laura, 2007. "Advantages and challenges of Bayesian networks in environmental modelling," Ecological Modelling, Elsevier, vol. 203(3), pages 312-318.
    4. Hui Xu & Daniel G. Brown & Allison L. Steiner, 2018. "Sensitivity to climate change of land use and management patterns optimized for efficient mitigation of nutrient pollution," Climatic Change, Springer, vol. 147(3), pages 647-662, April.
    5. Daniel Wallach & Linda O. Mearns & Alex C. Ruane & Reimund P. Rötter & Senthold Asseng, 2016. "Lessons from climate modeling on the design and use of ensembles for crop modeling," Climatic Change, Springer, vol. 139(3), pages 551-564, December.
    6. Kelli L. Larson & Dave D. White & Patricia Gober & Amber Wutich, 2015. "Decision-Making under Uncertainty for Water Sustainability and Urban Climate Change Adaptation," Sustainability, MDPI, vol. 7(11), pages 1-24, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mariela González-Narváez & María José Fernández-Gómez & Susana Mendes & José-Luis Molina & Omar Ruiz-Barzola & Purificación Galindo-Villardón, 2021. "Study of Temporal Variations in Species–Environment Association through an Innovative Multivariate Method: MixSTATICO," Sustainability, MDPI, vol. 13(11), pages 1-25, May.
    2. Meng-Leong How & Yong Jiet Chan & Sin-Mei Cheah, 2020. "Predictive Insights for Improving the Resilience of Global Food Security Using Artificial Intelligence," Sustainability, MDPI, vol. 12(15), pages 1-14, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moe, S. Jannicke & Haande, Sigrid & Couture, Raoul-Marie, 2016. "Climate change, cyanobacteria blooms and ecological status of lakes: A Bayesian network approach," Ecological Modelling, Elsevier, vol. 337(C), pages 330-347.
    2. Leonel Lara-Estrada & Livia Rasche & L. Enrique Sucar & Uwe A. Schneider, 2018. "Inferring Missing Climate Data for Agricultural Planning Using Bayesian Networks," Land, MDPI, vol. 7(1), pages 1-13, January.
    3. Meyer, Spencer R. & Johnson, Michelle L. & Lilieholm, Robert J. & Cronan, Christopher S., 2014. "Development of a stakeholder-driven spatial modeling framework for strategic landscape planning using Bayesian networks across two urban-rural gradients in Maine, USA," Ecological Modelling, Elsevier, vol. 291(C), pages 42-57.
    4. Alessandro Pagano & Irene Pluchinotta & Raffaele Giordano & Anna Bruna Petrangeli & Umberto Fratino & Michele Vurro, 2018. "Dealing with Uncertainty in Decision-Making for Drinking Water Supply Systems Exposed to Extreme Events," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(6), pages 2131-2145, April.
    5. Barton, David N. & Benjamin, Tamara & Cerdán, Carlos R. & DeClerck, Fabrice & Madsen, Anders L. & Rusch, Graciela M. & Salazar, Álvaro G. & Sanchez, Dalia & Villanueva, Cristóbal, 2016. "Assessing ecosystem services from multifunctional trees in pastures using Bayesian belief networks," Ecosystem Services, Elsevier, vol. 18(C), pages 165-174.
    6. Marcot, Bruce G., 2017. "Common quandaries and their practical solutions in Bayesian network modeling," Ecological Modelling, Elsevier, vol. 358(C), pages 1-9.
    7. Guo, Kai & Zhang, Xinchang & Kuai, Xi & Wu, Zhifeng & Chen, Yiyun & Liu, Yi, 2020. "A spatial bayesian-network approach as a decision-making tool for ecological-risk prevention in land ecosystems," Ecological Modelling, Elsevier, vol. 419(C).
    8. Gieder, Katherina D. & Karpanty, Sarah M. & Fraser, James D. & Catlin, Daniel H. & Gutierrez, Benjamin T. & Plant, Nathaniel G. & Turecek, Aaron M. & Robert Thieler, E., 2014. "A Bayesian network approach to predicting nest presence of the federally-threatened piping plover (Charadrius melodus) using barrier island features," Ecological Modelling, Elsevier, vol. 276(C), pages 38-50.
    9. Ropero, R.F. & Aguilera, P.A. & Rumí, R., 2015. "Analysis of the socioecological structure and dynamics of the territory using a hybrid Bayesian network classifier," Ecological Modelling, Elsevier, vol. 311(C), pages 73-87.
    10. Junquera, Victoria & Meyfroidt, Patrick & Sun, Zhanli & Latthachack, Phokham & Grêt-Regamey, Adrienne, 2020. "From global drivers to local land-use change: Understanding the northern Laos rubber boom," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 109, pages 103-115.
    11. Le, Hai Dinh & Smith, Carl & Herbohn, John, 2015. "Identifying interactions among reforestation success drivers: A case study from the Philippines," Ecological Modelling, Elsevier, vol. 316(C), pages 62-77.
    12. Lim, R.B.H. & Liew, J.H. & Kwik, J.T.B. & Yeo, D.C.J., 2018. "Predicting food web responses to biomanipulation using Bayesian Belief Network: Assessment of accuracy and applicability using in-situ exclosure experiments," Ecological Modelling, Elsevier, vol. 384(C), pages 308-315.
    13. McLaughlin, Douglas B. & Reckhow, Kenneth H., 2017. "A Bayesian network assessment of macroinvertebrate responses to nutrients and other factors in streams of the Eastern Corn Belt Plains, Ohio, USA," Ecological Modelling, Elsevier, vol. 345(C), pages 21-29.
    14. Di Zhang & Xinping Yan & Zaili Yang & Jin Wang, 2014. "An accident data–based approach for congestion risk assessment of inland waterways: A Yangtze River case," Journal of Risk and Reliability, , vol. 228(2), pages 176-188, April.
    15. Zhang, Quanzhong & Wei, Haiyan & Liu, Jing & Zhao, Zefang & Ran, Qiao & Gu, Wei, 2021. "A Bayesian network with fuzzy mathematics for species habitat suitability analysis: A case with limited Angelica sinensis (Oliv.) Diels data," Ecological Modelling, Elsevier, vol. 450(C).
    16. Jim Lewis & Kerrie Mengersen & Laurie Buys & Desley Vine & John Bell & Peter Morris & Gerard Ledwich, 2015. "Systems Modelling of the Socio-Technical Aspects of Residential Electricity Use and Network Peak Demand," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-21, July.
    17. Nicholson, Ann E. & Flores, M. Julia, 2011. "Combining state and transition models with dynamic Bayesian networks," Ecological Modelling, Elsevier, vol. 222(3), pages 555-566.
    18. Meineri, Eric & Dahlberg, C. Johan & Hylander, Kristoffer, 2015. "Using Gaussian Bayesian Networks to disentangle direct and indirect associations between landscape physiography, environmental variables and species distribution," Ecological Modelling, Elsevier, vol. 313(C), pages 127-136.
    19. Mostafa Shaaban & Carmen Schwartz & Joseph Macpherson & Annette Piorr, 2021. "A Conceptual Model Framework for Mapping, Analyzing and Managing Supply–Demand Mismatches of Ecosystem Services in Agricultural Landscapes," Land, MDPI, vol. 10(2), pages 1-19, January.
    20. Lotte Yanore & Jaap Sok & Alfons Oude Lansink, 2024. "Do Dutch farmers invest in expansion despite increased policy uncertainty? A participatory Bayesian network approach," Agribusiness, John Wiley & Sons, Ltd., vol. 40(1), pages 93-115, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:17:p:4764-:d:262781. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.