IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v7y2018i1p4-d126257.html
   My bibliography  Save this article

Inferring Missing Climate Data for Agricultural Planning Using Bayesian Networks

Author

Listed:
  • Leonel Lara-Estrada

    (Research Unit Suitability and Global Change, Center for Earth System Research and Sustainability, Universität Hamburg, Grindelberg 5, 20144 Hamburg, Germany
    School of Integrated Climate System Sciences, CLISAP, Grindelberg 5, 20144 Hamburg, Germany)

  • Livia Rasche

    (Research Unit Suitability and Global Change, Center for Earth System Research and Sustainability, Universität Hamburg, Grindelberg 5, 20144 Hamburg, Germany)

  • L. Enrique Sucar

    (Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro # 1, Tonantzintla, 72840 Puebla, Mexico)

  • Uwe A. Schneider

    (Research Unit Suitability and Global Change, Center for Earth System Research and Sustainability, Universität Hamburg, Grindelberg 5, 20144 Hamburg, Germany)

Abstract

Climate data availability plays a key role in development processes of policies, services, and planning in the agricultural sector. However, data at the spatial or temporal resolution required is often lacking, or certain values are missing. In this work, we propose to use a Bayesian network approach to generate data for missing variables. As a case study, we use relative humidity, which is an important indicator of land suitability for coffee production. For the model, we first extracted climate data for the variables precipitation, maximum and minimum air temperature, wind speed, solar radiation and relative humidity from the surface reanalysis dataset Climate Forecast System Reanalysis. We then used machine learning algorithms to define the model structure and parameters from the relationships of the variables found in the dataset. Precipitation, maximum and minimum air temperature, wind speed, and solar radiation are then used as proxy variables to infer missing values for monthly relative humidity and relative humidity for the driest month. For this, we used both complete and incomplete initial data. In both scenarios of data availability, the comparison of estimated and measured values of relative humidity shows a high level of agreement. We conclude that using Bayesian Networks is a practical solution to estimate relative humidity for coffee agricultural planning.

Suggested Citation

  • Leonel Lara-Estrada & Livia Rasche & L. Enrique Sucar & Uwe A. Schneider, 2018. "Inferring Missing Climate Data for Agricultural Planning Using Bayesian Networks," Land, MDPI, vol. 7(1), pages 1-13, January.
  • Handle: RePEc:gam:jlands:v:7:y:2018:i:1:p:4-:d:126257
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/7/1/4/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/7/1/4/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marcot, Bruce G., 2012. "Metrics for evaluating performance and uncertainty of Bayesian network models," Ecological Modelling, Elsevier, vol. 230(C), pages 50-62.
    2. Uusitalo, Laura, 2007. "Advantages and challenges of Bayesian networks in environmental modelling," Ecological Modelling, Elsevier, vol. 203(3), pages 312-318.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chuanjie Xie & Chong Huang & Deqiang Zhang & Wei He, 2021. "BiLSTM-I: A Deep Learning-Based Long Interval Gap-Filling Method for Meteorological Observation Data," IJERPH, MDPI, vol. 18(19), pages 1-12, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moe, S. Jannicke & Haande, Sigrid & Couture, Raoul-Marie, 2016. "Climate change, cyanobacteria blooms and ecological status of lakes: A Bayesian network approach," Ecological Modelling, Elsevier, vol. 337(C), pages 330-347.
    2. Meyer, Spencer R. & Johnson, Michelle L. & Lilieholm, Robert J. & Cronan, Christopher S., 2014. "Development of a stakeholder-driven spatial modeling framework for strategic landscape planning using Bayesian networks across two urban-rural gradients in Maine, USA," Ecological Modelling, Elsevier, vol. 291(C), pages 42-57.
    3. Anna Sperotto & Josè Luis Molina & Silvia Torresan & Andrea Critto & Manuel Pulido-Velazquez & Antonio Marcomini, 2019. "Water Quality Sustainability Evaluation under Uncertainty: A Multi-Scenario Analysis Based on Bayesian Networks," Sustainability, MDPI, vol. 11(17), pages 1-34, August.
    4. Alessandro Pagano & Irene Pluchinotta & Raffaele Giordano & Anna Bruna Petrangeli & Umberto Fratino & Michele Vurro, 2018. "Dealing with Uncertainty in Decision-Making for Drinking Water Supply Systems Exposed to Extreme Events," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(6), pages 2131-2145, April.
    5. Barton, David N. & Benjamin, Tamara & Cerdán, Carlos R. & DeClerck, Fabrice & Madsen, Anders L. & Rusch, Graciela M. & Salazar, à lvaro G. & Sanchez, Dalia & Villanueva, Cristóbal, 2016. "Assessing ecosystem services from multifunctional trees in pastures using Bayesian belief networks," Ecosystem Services, Elsevier, vol. 18(C), pages 165-174.
    6. Marcot, Bruce G., 2017. "Common quandaries and their practical solutions in Bayesian network modeling," Ecological Modelling, Elsevier, vol. 358(C), pages 1-9.
    7. Guo, Kai & Zhang, Xinchang & Kuai, Xi & Wu, Zhifeng & Chen, Yiyun & Liu, Yi, 2020. "A spatial bayesian-network approach as a decision-making tool for ecological-risk prevention in land ecosystems," Ecological Modelling, Elsevier, vol. 419(C).
    8. Gieder, Katherina D. & Karpanty, Sarah M. & Fraser, James D. & Catlin, Daniel H. & Gutierrez, Benjamin T. & Plant, Nathaniel G. & Turecek, Aaron M. & Robert Thieler, E., 2014. "A Bayesian network approach to predicting nest presence of the federally-threatened piping plover (Charadrius melodus) using barrier island features," Ecological Modelling, Elsevier, vol. 276(C), pages 38-50.
    9. Ropero, R.F. & Aguilera, P.A. & Rumí, R., 2015. "Analysis of the socioecological structure and dynamics of the territory using a hybrid Bayesian network classifier," Ecological Modelling, Elsevier, vol. 311(C), pages 73-87.
    10. Junquera, Victoria & Meyfroidt, Patrick & Sun, Zhanli & Latthachack, Phokham & Grêt-Regamey, Adrienne, 2020. "From global drivers to local land-use change: Understanding the northern Laos rubber boom," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 109, pages 103-115.
    11. Le, Hai Dinh & Smith, Carl & Herbohn, John, 2015. "Identifying interactions among reforestation success drivers: A case study from the Philippines," Ecological Modelling, Elsevier, vol. 316(C), pages 62-77.
    12. Lim, R.B.H. & Liew, J.H. & Kwik, J.T.B. & Yeo, D.C.J., 2018. "Predicting food web responses to biomanipulation using Bayesian Belief Network: Assessment of accuracy and applicability using in-situ exclosure experiments," Ecological Modelling, Elsevier, vol. 384(C), pages 308-315.
    13. McLaughlin, Douglas B. & Reckhow, Kenneth H., 2017. "A Bayesian network assessment of macroinvertebrate responses to nutrients and other factors in streams of the Eastern Corn Belt Plains, Ohio, USA," Ecological Modelling, Elsevier, vol. 345(C), pages 21-29.
    14. Di Zhang & Xinping Yan & Zaili Yang & Jin Wang, 2014. "An accident data–based approach for congestion risk assessment of inland waterways: A Yangtze River case," Journal of Risk and Reliability, , vol. 228(2), pages 176-188, April.
    15. Zhang, Quanzhong & Wei, Haiyan & Liu, Jing & Zhao, Zefang & Ran, Qiao & Gu, Wei, 2021. "A Bayesian network with fuzzy mathematics for species habitat suitability analysis: A case with limited Angelica sinensis (Oliv.) Diels data," Ecological Modelling, Elsevier, vol. 450(C).
    16. Jim Lewis & Kerrie Mengersen & Laurie Buys & Desley Vine & John Bell & Peter Morris & Gerard Ledwich, 2015. "Systems Modelling of the Socio-Technical Aspects of Residential Electricity Use and Network Peak Demand," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-21, July.
    17. Nicholson, Ann E. & Flores, M. Julia, 2011. "Combining state and transition models with dynamic Bayesian networks," Ecological Modelling, Elsevier, vol. 222(3), pages 555-566.
    18. Meineri, Eric & Dahlberg, C. Johan & Hylander, Kristoffer, 2015. "Using Gaussian Bayesian Networks to disentangle direct and indirect associations between landscape physiography, environmental variables and species distribution," Ecological Modelling, Elsevier, vol. 313(C), pages 127-136.
    19. Mostafa Shaaban & Carmen Schwartz & Joseph Macpherson & Annette Piorr, 2021. "A Conceptual Model Framework for Mapping, Analyzing and Managing Supply–Demand Mismatches of Ecosystem Services in Agricultural Landscapes," Land, MDPI, vol. 10(2), pages 1-19, January.
    20. Lotte Yanore & Jaap Sok & Alfons Oude Lansink, 2024. "Do Dutch farmers invest in expansion despite increased policy uncertainty? A participatory Bayesian network approach," Agribusiness, John Wiley & Sons, Ltd., vol. 40(1), pages 93-115, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:7:y:2018:i:1:p:4-:d:126257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.