IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i11p3205-d238269.html
   My bibliography  Save this article

Spatial Cluster-Based Model for Static Rebalancing Bike Sharing Problem

Author

Listed:
  • Bahman Lahoorpoor

    (Department of Civil Engineering, K.N. Toosi University of Technology, Tehran 19697, Iran)

  • Hamed Faroqi

    (School of Civil Engineering, The University of Queensland, Brisbane, QLD 4072, Australia)

  • Abolghasem Sadeghi-Niaraki

    (Geoinformation Tech. Center of Excellence, Faculty of Geomatics, K.N. Toosi University of Technology, Tehran 19697, Iran
    Department of Computer Science and Engineering, Sejong University, Seoul 143-747, Korea)

  • Soo-Mi Choi

    (Department of Computer Science and Engineering, Sejong University, Seoul 143-747, Korea)

Abstract

Bike sharing systems, as one of the complementary modes for public transit networks, are designed to help travelers in traversing the first/last mile of their trips. Different factors such as accessibility, availability, and fares influence these systems. The availability of bikes at certain times and locations is studied under rebalancing problem. The paper proposes a bottom-up cluster-based model to solve the static rebalancing problem in bike sharing systems. First, the spatial and temporal patterns of bike sharing trips in the network are investigated. Second, a similarity measure based on the trips between stations is defined to discover groups of correlated stations, using a hierarchical agglomerative clustering method. Third, two levels for rebalancing are assumed as intra-clusters and inter-clusters with the aim of keeping the balance of the network at the beginning of days. The intra-cluster level keeps the balance of bike distribution inside each cluster, and the inter-cluster level connects different clusters in order to keep the balance between the clusters. Finally, rebalancing tours are optimized according to the positive or negative balance at both levels of the intra-clusters and inter-clusters using a single objective genetic algorithm. The rebalancing problem is modeled as an optimization problem, which aims to minimize the tour length. The proposed model is implemented in one week of bike sharing trip data set in Chicago, USA. Outcomes of the model are validated for two subsequent weekdays. Analyses show that the proposed model can reduce the length of the rebalancing tour by 30%.

Suggested Citation

  • Bahman Lahoorpoor & Hamed Faroqi & Abolghasem Sadeghi-Niaraki & Soo-Mi Choi, 2019. "Spatial Cluster-Based Model for Static Rebalancing Bike Sharing Problem," Sustainability, MDPI, vol. 11(11), pages 1-21, June.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:11:p:3205-:d:238269
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/11/3205/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/11/3205/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Schuijbroek, J. & Hampshire, R.C. & van Hoeve, W.-J., 2017. "Inventory rebalancing and vehicle routing in bike sharing systems," European Journal of Operational Research, Elsevier, vol. 257(3), pages 992-1004.
    2. Li, Yanfeng & Szeto, W.Y. & Long, Jiancheng & Shui, C.S., 2016. "A multiple type bike repositioning problem," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 263-278.
    3. Hamed Faroqi & Abolghasem Sadeghi-Niaraki, 2016. "GIS-based ride-sharing and DRT in Tehran city," Public Transport, Springer, vol. 8(2), pages 243-260, September.
    4. Zhang, Dong & Yu, Chuhang & Desai, Jitamitra & Lau, H.Y.K. & Srivathsan, Sandeep, 2017. "A time-space network flow approach to dynamic repositioning in bicycle sharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 188-207.
    5. Alvarez-Valdes, Ramon & Belenguer, Jose M. & Benavent, Enrique & Bermudez, Jose D. & Muñoz, Facundo & Vercher, Enriqueta & Verdejo, Francisco, 2016. "Optimizing the level of service quality of a bike-sharing system," Omega, Elsevier, vol. 62(C), pages 163-175.
    6. Erdoğan, Güneş & Battarra, Maria & Wolfler Calvo, Roberto, 2015. "An exact algorithm for the static rebalancing problem arising in bicycle sharing systems," European Journal of Operational Research, Elsevier, vol. 245(3), pages 667-679.
    7. Regue, Robert & Recker, Will, 2014. "Proactive vehicle routing with inferred demand to solve the bikesharing rebalancing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 192-209.
    8. Dondo, Rodolfo & Cerda, Jaime, 2007. "A cluster-based optimization approach for the multi-depot heterogeneous fleet vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1478-1507, February.
    9. Erdoğan, Güneş & Laporte, Gilbert & Wolfler Calvo, Roberto, 2014. "The static bicycle relocation problem with demand intervals," European Journal of Operational Research, Elsevier, vol. 238(2), pages 451-457.
    10. Forma, Iris A. & Raviv, Tal & Tzur, Michal, 2015. "A 3-step math heuristic for the static repositioning problem in bike-sharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 230-247.
    11. Dell'Amico, Mauro & Hadjicostantinou, Eleni & Iori, Manuel & Novellani, Stefano, 2014. "The bike sharing rebalancing problem: Mathematical formulations and benchmark instances," Omega, Elsevier, vol. 45(C), pages 7-19.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Carmen Kar Hang & Leung, Eric Ka Ho, 2023. "Spatiotemporal analysis of bike-share demand using DTW-based clustering and predictive analytics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
    2. Wang, Yi-Jia & Kuo, Yong-Hong & Huang, George Q. & Gu, Weihua & Hu, Yaohua, 2022. "Dynamic demand-driven bike station clustering," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlos M. Vallez & Mario Castro & David Contreras, 2021. "Challenges and Opportunities in Dock-Based Bike-Sharing Rebalancing: A Systematic Review," Sustainability, MDPI, vol. 13(4), pages 1-26, February.
    2. Du, Mingyang & Cheng, Lin & Li, Xuefeng & Tang, Fang, 2020. "Static rebalancing optimization with considering the collection of malfunctioning bikes in free-floating bike sharing system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    3. Dell’Amico, Mauro & Iori, Manuel & Novellani, Stefano & Subramanian, Anand, 2018. "The Bike sharing Rebalancing Problem with Stochastic Demands," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 362-380.
    4. Szeto, W.Y. & Shui, C.S., 2018. "Exact loading and unloading strategies for the static multi-vehicle bike repositioning problem," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 176-211.
    5. Huang, Di & Chen, Xinyuan & Liu, Zhiyuan & Lyu, Cheng & Wang, Shuaian & Chen, Xuewu, 2020. "A static bike repositioning model in a hub-and-spoke network framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    6. Osorio, Jesus & Lei, Chao & Ouyang, Yanfeng, 2021. "Optimal rebalancing and on-board charging of shared electric scooters," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 197-219.
    7. Wang, Yi-Jia & Kuo, Yong-Hong & Huang, George Q. & Gu, Weihua & Hu, Yaohua, 2022. "Dynamic demand-driven bike station clustering," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    8. Ye Ding & Jiantong Zhang & Jiaqing Sun, 2022. "Branch-and-Price-and-Cut for the Heterogeneous Fleet and Multi-Depot Static Bike Rebalancing Problem with Split Load," Sustainability, MDPI, vol. 14(17), pages 1-24, August.
    9. Gilbert Laporte & Frédéric Meunier & Roberto Wolfler Calvo, 2018. "Shared mobility systems: an updated survey," Annals of Operations Research, Springer, vol. 271(1), pages 105-126, December.
    10. Xue Bai & Ning Ma & Kwai-Sang Chin, 2022. "Hybrid Heuristic for the Multi-Depot Static Bike Rebalancing and Collection Problem," Mathematics, MDPI, vol. 10(23), pages 1-28, December.
    11. Bulhões, Teobaldo & Subramanian, Anand & Erdoğan, Güneş & Laporte, Gilbert, 2018. "The static bike relocation problem with multiple vehicles and visits," European Journal of Operational Research, Elsevier, vol. 264(2), pages 508-523.
    12. Mohammed Elhenawy & Hesham A. Rakha & Youssef Bichiou & Mahmoud Masoud & Sebastien Glaser & Jack Pinnow & Ahmed Stohy, 2021. "A Feasible Solution for Rebalancing Large-Scale Bike Sharing Systems," Sustainability, MDPI, vol. 13(23), pages 1-19, December.
    13. Alain Quilliot & Antoine Sarbinowski & Hélène Toussaint, 2021. "Vehicle driven approaches for non preemptive vehicle relocation with integrated quality criterion in a vehicle sharing system," Annals of Operations Research, Springer, vol. 298(1), pages 445-468, March.
    14. Bruno Albert Neumann-Saavedra & Teodor Gabriel Crainic & Bernard Gendron & Dirk Christian Mattfeld & Michael Römer, 2020. "Integrating Resource Management in Service Network Design for Bike-Sharing Systems," Transportation Science, INFORMS, vol. 54(5), pages 1251-1271, September.
    15. Maggioni, Francesca & Cagnolari, Matteo & Bertazzi, Luca & Wallace, Stein W., 2019. "Stochastic optimization models for a bike-sharing problem with transshipment," European Journal of Operational Research, Elsevier, vol. 276(1), pages 272-283.
    16. Liang Gao & Wei Xu & Yifeng Duan, 2019. "Dynamic Scheduling Based on Predicted Inventory Variation Rate for Public Bicycle System," Sustainability, MDPI, vol. 11(7), pages 1-11, March.
    17. Ho, Sin C. & Szeto, W.Y., 2017. "A hybrid large neighborhood search for the static multi-vehicle bike-repositioning problem," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 340-363.
    18. Lv, Chang & Zhang, Chaoyong & Lian, Kunlei & Ren, Yaping & Meng, Leilei, 2022. "A two-echelon fuzzy clustering based heuristic for large-scale bike sharing repositioning problem," Transportation Research Part B: Methodological, Elsevier, vol. 160(C), pages 54-75.
    19. Li, Yanfeng & Liu, Yang, 2021. "The static bike rebalancing problem with optimal user incentives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 146(C).
    20. Wang, Xu & Sun, Huijun & Zhang, Si & Lv, Ying & Li, Tongfei, 2022. "Bike sharing rebalancing problem with variable demand," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:11:p:3205-:d:238269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.