IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i7p2462-d157911.html
   My bibliography  Save this article

Environmental Impacts of Experimental Production of Lactic Acid for Bioplastics from Ulva spp

Author

Listed:
  • Roel J. K. Helmes

    (Wageningen University & Research, Droevendaalsesteeg 4, 6708 PB Wageningen, The Netherlands)

  • Ana M. López-Contreras

    (Wageningen University & Research, Droevendaalsesteeg 4, 6708 PB Wageningen, The Netherlands)

  • Maud Benoit

    (Centre d’Etude et de Valorisation des Algues (CEVA), Presqu’Île de Pen Lan—BP 4, 22610 Pleubian, France)

  • Helena Abreu

    (ALGAplus, Travessa Alexandre da Conceição s/n, 3830-196 Ílhavo, Portugal)

  • Julie Maguire

    (Bantry Marine Research Station, Gearhies, Bantry, P75 AX07 Co. Cork, Ireland)

  • Fiona Moejes

    (Bantry Marine Research Station, Gearhies, Bantry, P75 AX07 Co. Cork, Ireland)

  • Sander W. K. van den Burg

    (Wageningen University & Research, Droevendaalsesteeg 4, 6708 PB Wageningen, The Netherlands)

Abstract

An exploratory Life Cycle Assessment (LCA) was carried out to provide insight into the environmental impacts of using the green seaweed Ulva spp. as a feedstock, for production of bioplastic. The study focused on the production of lactic acid as a precursor of polylactic acid. The study was on the production process: (1) The cultivation of Ulva spp. , in an Integrated Multitrophic Aquaculture system; (2) the processing of the biomass for solubilization of sugars; (3) the fermentation of the sugars to lactic acid; (4) the isolation of lactic acid from fermentation broth. The study identified environmental hotspots and compared an experimental seaweed production chain with conventional feedstocks. The main hotspot is derived from electricity consumption during seaweed cultivation. The impact of electricity consumption can be lowered by reducing energy use and sourcing renewable energy, and by improving the material efficiency in the product chain. To improve understanding of the process of production’s environmental impacts, future studies should broaden the system boundaries and scope of sustainability issues included in the environmental assessment.

Suggested Citation

  • Roel J. K. Helmes & Ana M. López-Contreras & Maud Benoit & Helena Abreu & Julie Maguire & Fiona Moejes & Sander W. K. van den Burg, 2018. "Environmental Impacts of Experimental Production of Lactic Acid for Bioplastics from Ulva spp ," Sustainability, MDPI, vol. 10(7), pages 1-15, July.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:7:p:2462-:d:157911
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/7/2462/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/7/2462/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kunnika Changwichan & Thapat Silalertruksa & Shabbir H. Gheewala, 2018. "Eco-Efficiency Assessment of Bioplastics Production Systems and End-of-Life Options," Sustainability, MDPI, vol. 10(4), pages 1-15, March.
    2. Stefan Kraan, 2013. "Mass-cultivation of carbohydrate rich macroalgae, a possible solution for sustainable biofuel production," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(1), pages 27-46, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wellenreuther, Claudia & Wolf, André, 2020. "Innovative feedstocks in biodegradable bio-based plastics: A literature review," HWWI Research Papers 194, Hamburg Institute of International Economics (HWWI).
    2. Braud, L. & McDonnell, K. & Murphy, F., 2023. "Environmental life cycle assessment of algae systems: Critical review of modelling approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    3. Rajeena Sugumaran & Birdie Scott Padam & Wilson Thau Lym Yong & Suryani Saallah & Kamruddin Ahmed & Nur Athirah Yusof, 2022. "A Retrospective Review of Global Commercial Seaweed Production—Current Challenges, Biosecurity and Mitigation Measures and Prospects," IJERPH, MDPI, vol. 19(12), pages 1-31, June.
    4. Wellenreuther, Claudia & Wolf, André & Zander, Nils, 2021. "Cost structure of bio-based plastics: A Monte-Carlo-analysis for PLA," HWWI Research Papers 197, Hamburg Institute of International Economics (HWWI).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simone Blanc & Stefano Massaglia & Filippo Brun & Cristiana Peano & Angela Mosso & Nicole Roberta Giuggioli, 2019. "Use of Bio-Based Plastics in the Fruit Supply Chain: An Integrated Approach to Assess Environmental, Economic, and Social Sustainability," Sustainability, MDPI, vol. 11(9), pages 1-18, April.
    2. Sebastian Spierling & Venkateshwaran Venkatachalam & Marina Mudersbach & Nico Becker & Christoph Herrmann & Hans-Josef Endres, 2020. "End-of-Life Options for Bio-Based Plastics in a Circular Economy—Status Quo and Potential from a Life Cycle Assessment Perspective," Resources, MDPI, vol. 9(7), pages 1-20, July.
    3. Adnan, Muflih A. & Hossain, Mohammad M. & Kibria, Md Golam, 2020. "Biomass upgrading to high-value chemicals via gasification and electrolysis: A thermodynamic analysis," Renewable Energy, Elsevier, vol. 162(C), pages 1367-1379.
    4. Ana Fonseca & Edgar Ramalho & Ana Gouveia & Filipa Figueiredo & João Nunes, 2023. "Life Cycle Assessment of PLA Products: A Systematic Literature Review," Sustainability, MDPI, vol. 15(16), pages 1-19, August.
    5. van Oort, P.A.J. & Verhagen, A. & van der Werf, A.K., 2023. "Can seaweeds feed the world? Modelling world offshore seaweed production potential," Ecological Modelling, Elsevier, vol. 484(C).
    6. Eun Young Park & Jung Kyu Park, 2020. "Enzymatic Saccharification of Laminaria japonica by Cellulase for the Production of Reducing Sugars," Energies, MDPI, vol. 13(3), pages 1-9, February.
    7. Herika Mylena Medeiros de Queiroz Andrade & Luiz Pinguelli Rosa & Flavo Elano Soares de Souza & Neilton Fidelis da Silva & Maulori Curié Cabral & Dárlio Inácio Alves Teixeira, 2020. "Seaweed Production Potential in the Brazilian Northeast: A Study on the Eastern Coast of the State of Rio Grande do Norte, RN, Brazil," Sustainability, MDPI, vol. 12(3), pages 1-20, January.
    8. Rastogi, Rajesh P. & Pandey, Ashok & Larroche, Christian & Madamwar, Datta, 2018. "Algal Green Energy – R&D and technological perspectives for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2946-2969.
    9. Sambusiti, Cecilia & Bellucci, Micol & Zabaniotou, Anastasia & Beneduce, Luciano & Monlau, Florian, 2015. "Algae as promising feedstocks for fermentative biohydrogen production according to a biorefinery approach: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 20-36.
    10. Taofeeq D. Moshood & Gusman Nawanir & Fatimah Mahmud & Fazeeda Mohamad & Mohd Hanafiah Ahmad & Airin Abdul Ghani, 2021. "Expanding Policy for Biodegradable Plastic Products and Market Dynamics of Bio-Based Plastics: Challenges and Opportunities," Sustainability, MDPI, vol. 13(11), pages 1-22, May.
    11. Ik Kim & Chan-young Song & Eui-chan Jeon, 2020. "Comparison of Product Sustainability of Conventional and Low-Carbon Apples in Korea," Sustainability, MDPI, vol. 12(22), pages 1-18, November.
    12. John James Milledge & Supattra Maneein & Elena Arribas López & Debbie Bartlett, 2020. "Sargassum Inundations in Turks and Caicos: Methane Potential and Proximate, Ultimate, Lipid, Amino Acid, Metal and Metalloid Analyses," Energies, MDPI, vol. 13(6), pages 1-27, March.
    13. Fernand, Francois & Israel, Alvaro & Skjermo, Jorunn & Wichard, Thomas & Timmermans, Klaas R. & Golberg, Alexander, 2017. "Offshore macroalgae biomass for bioenergy production: Environmental aspects, technological achievements and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 35-45.
    14. Franziska Hesser & Daniela Groiß-Fürtner & Leona Woitsch & Claudia Mair-Bauernfeind, 2023. "Ex-Ante Eco-Efficiency Assessment of Dendromass Production: Conception and Experiences of an Innovation Project," Land, MDPI, vol. 12(4), pages 1-16, April.
    15. David O. Kazmer & Davide Masato & Leonardo Piccolo & Kyle Puleo & Joshua Krantz & Varun Venoor & Austin Colon & Justin Limkaichong & Neil Dewar & Denis Babin & Cheryl Sayer, 2021. "Multivariate Modeling of Mechanical Properties for Hot Runner Molded Bioplastics and a Recycled Polypropylene Blend," Sustainability, MDPI, vol. 13(14), pages 1-23, July.
    16. Beata Michaliszyn-Gabryś & Janusz Krupanek & Mariusz Kalisz & Jonathan Smith, 2022. "Challenges for Sustainability in Packaging of Fresh Vegetables in Organic Farming," Sustainability, MDPI, vol. 14(9), pages 1-29, April.
    17. Sara García-Poza & Adriana Leandro & Carla Cotas & João Cotas & João C. Marques & Leonel Pereira & Ana M. M. Gonçalves, 2020. "The Evolution Road of Seaweed Aquaculture: Cultivation Technologies and the Industry 4.0," IJERPH, MDPI, vol. 17(18), pages 1-42, September.
    18. Simona Armeli Minicante & Lucia Bongiorni & Amelia De Lazzari, 2022. "Bio-Based Products from Mediterranean Seaweeds: Italian Opportunities and Challenges for a Sustainable Blue Economy," Sustainability, MDPI, vol. 14(9), pages 1-22, May.
    19. Halayit Abrha & Jonnathan Cabrera & Yexin Dai & Muhammad Irfan & Abrham Toma & Shipu Jiao & Xianhua Liu, 2022. "Bio-Based Plastics Production, Impact and End of Life: A Literature Review and Content Analysis," Sustainability, MDPI, vol. 14(8), pages 1-20, April.
    20. Sudhakar, K. & Mamat, R. & Samykano, M. & Azmi, W.H. & Ishak, W.F.W. & Yusaf, Talal, 2018. "An overview of marine macroalgae as bioresource," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 165-179.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:7:p:2462-:d:157911. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.