IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i7p2366-d156799.html
   My bibliography  Save this article

Relation between Urban Volume and Land Surface Temperature: A Comparative Study of Planned and Traditional Cities in Japan

Author

Listed:
  • Manjula Ranagalage

    (Graduate School of Life and Environmental Sciences, University of Tsukuba 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
    Department of Environmental Management, Faculty of Social Sciences and Humanities, Rajarata University of Sri Lanka, Mihintale 50300, Sri Lanka)

  • Ronald C. Estoque

    (Center for Social and Environmental Systems Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan)

  • Hepi H. Handayani

    (Graduate School of Life and Environmental Sciences, University of Tsukuba 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
    Geomatics Department, Institut Teknologi Sepuluh Nopember, Campus ITS Sukolilo, Surabaya, East Java 60111, Indonesia)

  • Xinmin Zhang

    (Graduate School of Life and Environmental Sciences, University of Tsukuba 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan)

  • Takehiro Morimoto

    (Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan)

  • Takeo Tadono

    (Earth Observation Research Center, Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan)

  • Yuji Murayama

    (Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan)

Abstract

The horizontal two-dimensional (2D) urban land use approach is not sufficient to trace rapid changes in urban environment. Hence, a three-dimensional (3D) approach that is different from the traditional geographical method is necessary to understand the mechanism of compound urban diversity. Using remote sensing data captured in 2010/2011 and geospatial tools and techniques, we quantified the urban volume (UV, consisting of urban built volume (UBV) and urban green volume (UGV)) and retrieved and mapped the land surface temperature (LST) of two cities in Japan (Tsukuba, a planned city, and Tsuchiura, a traditional city). We compared these two cities in terms of (1) UBV and UGV and their relationships with mean LST; and (2) the relationship of the UGV–UBV ratio with mean LST. Tsukuba had a total UBV of 74 million m 3 , while Tsuchiura had a total of 89 million m 3 . In terms of UGV, Tsukuba had a total of 52 million m 3 , while Tsuchiura had a total of 29 million m 3 . In both cities, UBV had a positive relationship with mean LST (Tsukuba: R 2 = 0.31, p < 0.001; Tsuchiura: R 2 = 0.42, p < 0.001), and UGV had a negative relationship with mean LST (Tsukuba: R 2 = 0.53, p < 0.001; Tsuchiura: R 2 = 0.19, p < 0.001). Tsukuba also had a higher UGV–UBV ratio of 54.9% in comparison with Tsuchiura, with 28.7%. Overall, the results indicate that mean LST was more intense in the traditional city (Tsuchiura). This could have been due to the difference in urban spatial structure. As a planned city, Tsukuba is still a relatively young city that has more dispersed green spaces and a well-spread (so far) built-up area.

Suggested Citation

  • Manjula Ranagalage & Ronald C. Estoque & Hepi H. Handayani & Xinmin Zhang & Takehiro Morimoto & Takeo Tadono & Yuji Murayama, 2018. "Relation between Urban Volume and Land Surface Temperature: A Comparative Study of Planned and Traditional Cities in Japan," Sustainability, MDPI, vol. 10(7), pages 1-17, July.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:7:p:2366-:d:156799
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/7/2366/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/7/2366/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lambert, Bruce Henry, 2000. "Building Innovative Communities: Lessons from Japan's Science City Projects," EIJS Working Paper Series 107, Stockholm School of Economics, The European Institute of Japanese Studies.
    2. Cervero, Robert, 1998. "The Planned City: Coping With Decentralization: an American Perspective," University of California Transportation Center, Working Papers qt5b29d0fd, University of California Transportation Center.
    3. Cervero, Robert, 1998. "The Planned City: Coping With Decentralization: an American Perspective," University of California Transportation Center, Working Papers qt551184xc, University of California Transportation Center.
    4. repec:asg:wpaper:1039 is not listed on IDEAS
    5. Hong Jin & Peng Cui & Nyuk Hien Wong & Marcel Ignatius, 2018. "Assessing the Effects of Urban Morphology Parameters on Microclimate in Singapore to Control the Urban Heat Island Effect," Sustainability, MDPI, vol. 10(1), pages 1-18, January.
    6. Meng Huang & Peng Cui & Xin He, 2018. "Study of the Cooling Effects of Urban Green Space in Harbin in Terms of Reducing the Heat Island Effect," Sustainability, MDPI, vol. 10(4), pages 1-17, April.
    7. Manjula Ranagalage & Ronald C. Estoque & Xinmin Zhang & Yuji Murayama, 2018. "Spatial Changes of Urban Heat Island Formation in the Colombo District, Sri Lanka: Implications for Sustainability Planning," Sustainability, MDPI, vol. 10(5), pages 1-21, April.
    8. Eric Koomen & Piet Rietveld & Fernando Bacao, 2009. "The Third Dimension in Urban Geography: The Urban-Volume Approach," Environment and Planning B, , vol. 36(6), pages 1008-1025, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Srijana Shrestha & Khem Narayan Poudyal & Nawraj Bhattarai & Mohan B. Dangi & John J. Boland, 2022. "An Assessment of the Impact of Land Use and Land Cover Change on the Degradation of Ecosystem Service Values in Kathmandu Valley Using Remote Sensing and GIS," Sustainability, MDPI, vol. 14(23), pages 1-18, November.
    2. Mohammad Mansourmoghaddam & Negar Naghipur & Iman Rousta & Seyed Kazem Alavipanah & Haraldur Olafsson & Ashehad A. Ali, 2023. "Quantifying the Effects of Green-Town Development on Land Surface Temperatures (LST) (A Case Study at Karizland (Karizboom), Yazd, Iran)," Land, MDPI, vol. 12(4), pages 1-19, April.
    3. Abel Balew & Fisha Semaw, 2022. "Impacts of land-use and land-cover changes on surface urban heat islands in Addis Ababa city and its surrounding," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 832-866, January.
    4. Shukla, Anugya & Jain, Kamal & Ramsankaran, RAAJ & Rajasekaran, Eswar, 2021. "Understanding the macro-micro dynamics of urban densification: A case study of different sized Indian cities," Land Use Policy, Elsevier, vol. 107(C).
    5. Manjula Ranagalage & Yuji Murayama & DMSLB Dissanayake & Matamyo Simwanda, 2019. "The Impacts of Landscape Changes on Annual Mean Land Surface Temperature in the Tropical Mountain City of Sri Lanka: A Case Study of Nuwara Eliya (1996–2017)," Sustainability, MDPI, vol. 11(19), pages 1-26, October.
    6. DMSLB Dissanayake & Takehiro Morimoto & Yuji Murayama & Manjula Ranagalage & Hepi H. Handayani, 2018. "Impact of Urban Surface Characteristics and Socio-Economic Variables on the Spatial Variation of Land Surface Temperature in Lagos City, Nigeria," Sustainability, MDPI, vol. 11(1), pages 1-23, December.
    7. Suiping Zeng & Jiahao Zhang & Jian Tian, 2023. "Analysis and Optimization of Thermal Environment in Old Urban Areas from the Perspective of “Function–Form” Differentiation," Sustainability, MDPI, vol. 15(7), pages 1-23, April.
    8. Ashfa Achmad & Noer Fadhly & Anwar Deli & Ichwana Ramli, 2022. "Urban growth and its impact on land surface temperature in an industrial city in Aceh, Indonesia," Letters in Spatial and Resource Sciences, Springer, vol. 15(1), pages 39-58, April.
    9. DMSLB Dissanayake & Takehiro Morimoto & Yuji Murayama & Manjula Ranagalage, 2019. "Impact of Landscape Structure on the Variation of Land Surface Temperature in Sub-Saharan Region: A Case Study of Addis Ababa using Landsat Data (1986–2016)," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    10. Iman Rousta & Md Omar Sarif & Rajan Dev Gupta & Haraldur Olafsson & Manjula Ranagalage & Yuji Murayama & Hao Zhang & Terence Darlington Mushore, 2018. "Spatiotemporal Analysis of Land Use/Land Cover and Its Effects on Surface Urban Heat Island Using Landsat Data: A Case Study of Metropolitan City Tehran (1988–2018)," Sustainability, MDPI, vol. 10(12), pages 1-25, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marie-Hélène Massot & Emre Korsu, 2005. "Achieving a Jobs-Housing balance in the Paris region - the potential of reducing car trafic," ERSA conference papers ersa05p647, European Regional Science Association.
    2. Hong Jin & Liang Qiao & Peng Cui, 2020. "Study on the Effect of Streets’ Space Forms on Campus Microclimate in the Severe Cold Region of China—Case Study of a University Campus in Daqing City," IJERPH, MDPI, vol. 17(22), pages 1-20, November.
    3. Teresa Santos & Raquel Deus & Jorge Rocha & José António Tenedório, 2021. "Assessing Sustainable Urban Development Trends in a Dynamic Tourist Coastal Area Using 3D Spatial Indicators," Energies, MDPI, vol. 14(16), pages 1-22, August.
    4. Abbasabadi, Narjes & Ashayeri, Mehdi & Azari, Rahman & Stephens, Brent & Heidarinejad, Mohammad, 2019. "An integrated data-driven framework for urban energy use modeling (UEUM)," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    5. Néstor Santillán-Soto & O. Rafael García-Cueto & Alejandro A. Lambert-Arista & Sara Ojeda-Benítez & Samantha E. Cruz-Sotelo, 2019. "Comparative Analysis of Two Urban Microclimates: Energy Consumption and Greenhouse Gas Emissions," Sustainability, MDPI, vol. 11(7), pages 1-11, April.
    6. Manish Ramaiah & Ram Avtar & Md. Mustafizur Rahman, 2020. "Land Cover Influences on LST in Two Proposed Smart Cities of India: Comparative Analysis Using Spectral Indices," Land, MDPI, vol. 9(9), pages 1-21, August.
    7. Yingxue Rao & Yi Zhong & Qingsong He & Jingyi Dai, 2022. "Assessing the Equity of Accessibility to Urban Green Space: A Study of 254 Cities in China," IJERPH, MDPI, vol. 19(8), pages 1-20, April.
    8. Meng Huang & Peng Cui & Xin He, 2018. "Study of the Cooling Effects of Urban Green Space in Harbin in Terms of Reducing the Heat Island Effect," Sustainability, MDPI, vol. 10(4), pages 1-17, April.
    9. Olympia Koziatek & Suzana Dragićević, 2019. "A local and regional spatial index for measuring three-dimensional urban compactness growth," Environment and Planning B, , vol. 46(1), pages 143-164, January.
    10. Fahad Haneef & Giovanni Pernigotto & Andrea Gasparella & Jérôme Henri Kämpf, 2021. "Application of Urban Scale Energy Modelling and Multi-Objective Optimization Techniques for Building Energy Renovation at District Scale," Sustainability, MDPI, vol. 13(20), pages 1-26, October.
    11. Rafiee, A. & Dias, E. & Koomen, E., 2019. "Analysing the impact of spatial context on the heat consumption of individual households," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 461-470.
    12. Wenbin Luo & Mingming Su, 2018. "A Spatial-Temporal Analysis of Urban Parkland Expansion in China and Practical Implications to Enhance Urban Sustainability," Sustainability, MDPI, vol. 11(1), pages 1-14, December.
    13. Miguel Núñez-Peiró & Anna Mavrogianni & Phil Symonds & Carmen Sánchez-Guevara Sánchez & F. Javier Neila González, 2021. "Modelling Long-Term Urban Temperatures with Less Training Data: A Comparative Study Using Neural Networks in the City of Madrid," Sustainability, MDPI, vol. 13(15), pages 1-23, July.
    14. Yang, Chen & Zhao, Shuqing, 2022. "Urban vertical profiles of three most urbanized Chinese cities and the spatial coupling with horizontal urban expansion," Land Use Policy, Elsevier, vol. 113(C).
    15. DMSLB Dissanayake & Takehiro Morimoto & Yuji Murayama & Manjula Ranagalage, 2019. "Impact of Landscape Structure on the Variation of Land Surface Temperature in Sub-Saharan Region: A Case Study of Addis Ababa using Landsat Data (1986–2016)," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    16. Zi-Ce Ma & Peng Sun & Qiang Zhang & Yu-Qian Hu & Wei Jiang, 2021. "Characterization and Evaluation of MODIS-Derived Crop Water Stress Index (CWSI) for Monitoring Drought from 2001 to 2017 over Inner Mongolia," Sustainability, MDPI, vol. 13(2), pages 1-17, January.
    17. Hans R. A. Koster & Piet Rietveld & Jos N. van Ommerren, 2011. "Is the Sky the Limit? An Analysis of High-Rise Office Buildings," SERC Discussion Papers 0086, Centre for Economic Performance, LSE.
    18. Manjula Ranagalage & Yuji Murayama & DMSLB Dissanayake & Matamyo Simwanda, 2019. "The Impacts of Landscape Changes on Annual Mean Land Surface Temperature in the Tropical Mountain City of Sri Lanka: A Case Study of Nuwara Eliya (1996–2017)," Sustainability, MDPI, vol. 11(19), pages 1-26, October.
    19. Beatriz Sanchez & Matthias Roth & Pratiman Patel & Andrés Simón-Moral, 2023. "Application of a Semi-Empirical Approach to Map Maximum Urban Heat Island Intensity in Singapore," Sustainability, MDPI, vol. 15(17), pages 1-17, August.
    20. Muhammad Sajid Mehmood & Zeeshan Zafar & Muhammad Sajjad & Sadam Hussain & Shiyan Zhai & Yaochen Qin, 2022. "Time Series Analyses and Forecasting of Surface Urban Heat Island Intensity Using ARIMA Model in Punjab, Pakistan," Land, MDPI, vol. 12(1), pages 1-20, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:7:p:2366-:d:156799. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.