IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i4p729-d1623025.html
   My bibliography  Save this article

Spatiotemporal Impacts and Mechanisms of Multi-Dimensional Urban Morphological Characteristics on Regional Heat Effects in the Guangdong–Hong Kong–Macao Greater Bay Area

Author

Listed:
  • Jiayu Wang

    (School of Architecture and Urban Planning, Beijing University of Civil Engineering and Architecture, Beijing 100044, China)

  • Yixuan Wang

    (School of Architecture, Tianjin University, Tianjin 300072, China)

  • Tian Chen

    (School of Architecture, Tianjin University, Tianjin 300072, China)

Abstract

The impact of urban morphology characteristics on regional thermal environments is a crucial topic in urban planning and climate adaptation research. However, existing studies are often limited to a single dimension and fail to fully reveal the spatiotemporal impact mechanisms of multi-dimensional urban morphology on thermal environments and their connection to regional planning policies. This study focuses on the Guangdong–Hong Kong–Macao Greater Bay Area (GBA), combining quantitative data from landscape pattern indices, land use expansion patterns, and local climate zones (LCZs) derived from 2000 to 2020. By using geographically weighted regression and spatial autocorrelation analysis, we systematically explore the spatiotemporal effects and mechanisms of multi-dimensional urban morphology characteristics on regional thermal effects. We found the following points. (1) Built-up land patch density is significantly positively correlated with LST, with the urban heat island (UHI) effect spreading from core areas to the periphery; this corroborates the thermal environment differentiation features under the “multi-center, networked” spatial planning pattern of the GBA. (2) Outlying expansion mitigates local LST rise through an ecological isolation effect, and infill expansion significantly exacerbates the UHI effect due to high-intensity development, reflecting the differentiated impacts of various expansion patterns on the thermal environment. (3) LCZ spatial distribution aligns closely with regional planning, with the solar radiation shading effect of high-rise buildings significantly cooling daytime LSTs, whereas the thermal storage properties of traditional building materials and human heat sources cause nighttime LST increases; this reveals the deep influence of urban morphology mechanisms, building materials, and human activities on thermal environments. The findings provide scientific support for achieving a win–win goal of high-quality development and ecological security in the GBA while also offering a theoretical basis and practical insights for thermal environment regulation in high-density urban clusters worldwide.

Suggested Citation

  • Jiayu Wang & Yixuan Wang & Tian Chen, 2025. "Spatiotemporal Impacts and Mechanisms of Multi-Dimensional Urban Morphological Characteristics on Regional Heat Effects in the Guangdong–Hong Kong–Macao Greater Bay Area," Land, MDPI, vol. 14(4), pages 1-29, March.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:4:p:729-:d:1623025
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/4/729/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/4/729/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yihan Yin & Song Li & Xiaoyi Xing & Xinyi Zhou & Yujie Kang & Qi Hu & Yanjing Li, 2024. "Cooling Benefits of Urban Tree Canopy: A Systematic Review," Sustainability, MDPI, vol. 16(12), pages 1-21, June.
    2. Azad Rasul & Heiko Balzter & Claire Smith & John Remedios & Bashir Adamu & José A. Sobrino & Manat Srivanit & Qihao Weng, 2017. "A Review on Remote Sensing of Urban Heat and Cool Islands," Land, MDPI, vol. 6(2), pages 1-10, June.
    3. Rao, Yingxue & Dai, Jingyi & Dai, Deyi & He, Qingsong, 2021. "Effect of urban growth pattern on land surface temperature in China: A multi-scale landscape analysis of 338 cities," Land Use Policy, Elsevier, vol. 103(C).
    4. Manjula Ranagalage & Ronald C. Estoque & Hepi H. Handayani & Xinmin Zhang & Takehiro Morimoto & Takeo Tadono & Yuji Murayama, 2018. "Relation between Urban Volume and Land Surface Temperature: A Comparative Study of Planned and Traditional Cities in Japan," Sustainability, MDPI, vol. 10(7), pages 1-17, July.
    5. Richard Massey & Brendan M. Rogers & Logan T. Berner & Sol Cooperdock & Michelle C. Mack & Xanthe J. Walker & Scott J. Goetz, 2023. "Forest composition change and biophysical climate feedbacks across boreal North America," Nature Climate Change, Nature, vol. 13(12), pages 1368-1375, December.
    6. Yu Song & Xiaodong Song & Guofan Shao, 2020. "Effects of Green Space Patterns on Urban Thermal Environment at Multiple Spatial–Temporal Scales," Sustainability, MDPI, vol. 12(17), pages 1-18, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qing Chang & Xiangbo Fan & Shaohui Zou, 2025. "Threshold Effects of Renewable Energy Investment on the Energy Efficiency–Fossil Fuel Consumption Nexus: Evidence from 71 Countries," Energies, MDPI, vol. 18(8), pages 1-20, April.
    2. Shuxin Fan & Mengyuan Zhang & Yilun Li & Kun Li & Li Dong, 2021. "Impacts of Composition and Canopy Characteristics of Plant Communities on Microclimate and Airborne Particles in Beijing, China," Sustainability, MDPI, vol. 13(9), pages 1-17, April.
    3. Meng Huang & Peng Cui & Xin He, 2018. "Study of the Cooling Effects of Urban Green Space in Harbin in Terms of Reducing the Heat Island Effect," Sustainability, MDPI, vol. 10(4), pages 1-17, April.
    4. Hua Shi & George Xian & Roger Auch & Kevin Gallo & Qiang Zhou, 2021. "Urban Heat Island and Its Regional Impacts Using Remotely Sensed Thermal Data—A Review of Recent Developments and Methodology," Land, MDPI, vol. 10(8), pages 1-30, August.
    5. Han Xiao & Monika Kopecká & Shan Guo & Yanning Guan & Danlu Cai & Chunyan Zhang & Xiaoxin Zhang & Wutao Yao, 2018. "Responses of Urban Land Surface Temperature on Land Cover: A Comparative Study of Vienna and Madrid," Sustainability, MDPI, vol. 10(2), pages 1-19, January.
    6. Ashfa Achmad & Noer Fadhly & Anwar Deli & Ichwana Ramli, 2022. "Urban growth and its impact on land surface temperature in an industrial city in Aceh, Indonesia," Letters in Spatial and Resource Sciences, Springer, vol. 15(1), pages 39-58, April.
    7. DMSLB Dissanayake & Takehiro Morimoto & Yuji Murayama & Manjula Ranagalage, 2019. "Impact of Landscape Structure on the Variation of Land Surface Temperature in Sub-Saharan Region: A Case Study of Addis Ababa using Landsat Data (1986–2016)," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    8. Suiping Zeng & Jiahao Zhang & Jian Tian, 2023. "Analysis and Optimization of Thermal Environment in Old Urban Areas from the Perspective of “Function–Form” Differentiation," Sustainability, MDPI, vol. 15(7), pages 1-23, April.
    9. Chen Qu & Wen Li & Jia Xu & Song Shi, 2023. "Blackland Conservation and Utilization, Carbon Storage and Ecological Risk in Green Space: A Case Study from Heilongjiang Province in China," IJERPH, MDPI, vol. 20(4), pages 1-21, February.
    10. Vadakkuveettil, Ashique & Grover, Aakriti, 2023. "Bi-temporal characterization of terrestrial temperature in relation to urban land use land cover dynamics and policies in Kozhikode Urban Area, India," Land Use Policy, Elsevier, vol. 132(C).
    11. Monika Kopecká & Harini Nagendra & Andrew Millington, 2018. "Urban Land Systems: An Ecosystems Perspective," Land, MDPI, vol. 7(1), pages 1-4, January.
    12. Renyang Wang & Qingsong He & Lu Zhang & Huiying Wang, 2021. "Coupling Cellular Automata and a Genetic Algorithm to Generate a Vibrant Urban Form—A Case Study of Wuhan, China," IJERPH, MDPI, vol. 18(21), pages 1-15, October.
    13. Haroon Stephen, 2018. "Trend Analysis of Las Vegas Land Cover and Temperature Using Remote Sensing," Land, MDPI, vol. 7(4), pages 1-19, November.
    14. Dakota McCarty & Jaekyung Lee & Hyun Woo Kim, 2021. "Machine Learning Simulation of Land Cover Impact on Surface Urban Heat Island Surrounding Park Areas," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    15. Iman Rousta & Md Omar Sarif & Rajan Dev Gupta & Haraldur Olafsson & Manjula Ranagalage & Yuji Murayama & Hao Zhang & Terence Darlington Mushore, 2018. "Spatiotemporal Analysis of Land Use/Land Cover and Its Effects on Surface Urban Heat Island Using Landsat Data: A Case Study of Metropolitan City Tehran (1988–2018)," Sustainability, MDPI, vol. 10(12), pages 1-25, November.
    16. Joanna Badach & Jakub Szczepański & Wojciech Bonenberg & Jacek Gębicki & Lucyna Nyka, 2022. "Developing the Urban Blue-Green Infrastructure as a Tool for Urban Air Quality Management," Sustainability, MDPI, vol. 14(15), pages 1-29, August.
    17. DMSLB Dissanayake & Takehiro Morimoto & Yuji Murayama & Manjula Ranagalage & Hepi H. Handayani, 2018. "Impact of Urban Surface Characteristics and Socio-Economic Variables on the Spatial Variation of Land Surface Temperature in Lagos City, Nigeria," Sustainability, MDPI, vol. 11(1), pages 1-23, December.
    18. Nikola Žižlavská & Tomáš Mikita & Zdeněk Patočka, 2021. "The Effects of Roadside Woody Vegetation on the Surface Temperature of Cycle Paths," Land, MDPI, vol. 10(5), pages 1-16, May.
    19. Sushobhan Sen & Jeffery Roesler & Benjamin Ruddell & Ariane Middel, 2019. "Cool Pavement Strategies for Urban Heat Island Mitigation in Suburban Phoenix, Arizona," Sustainability, MDPI, vol. 11(16), pages 1-21, August.
    20. Srijana Shrestha & Khem Narayan Poudyal & Nawraj Bhattarai & Mohan B. Dangi & John J. Boland, 2022. "An Assessment of the Impact of Land Use and Land Cover Change on the Degradation of Ecosystem Service Values in Kathmandu Valley Using Remote Sensing and GIS," Sustainability, MDPI, vol. 14(23), pages 1-18, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:4:p:729-:d:1623025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.