IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i5p1519-d145677.html
   My bibliography  Save this article

Research on a Microgrid Subsidy Strategy Based on Operational Efficiency of the Industry Chain

Author

Listed:
  • Yong Long

    (School of Economics and Business Administration, Chongqing University, Chongqing 400030, China)

  • Chengrong Pan

    (School of Economics and Business Administration, Chongqing University, Chongqing 400030, China
    International Business School, Sichuan International Studies University, Chongqing 400031, China)

  • Yu Wang

    (School of Economics and Business Administration, Chongqing University, Chongqing 400030, China)

Abstract

Government subsidy is a powerful tool to motivate the development of a new energy industry. At the early stage of microgrid development, for the sake of the cost and benefit issue, it is necessary for the government to subsidize so as to support and promote the development of microgrids. However, a big challenge in practice is how to optimize the operational efficiency of the microgrid industry chain with varying targets and methods of subsidy. In order to explore this problem, we construct a subsidy model based on the microgrid industry chain, involving government, investor, operator, equipment supplier, and user. Through calculation and solution of this model, we obtain price and return indicators of each microgrid industry chain participant when the subsidy target differs. Based on that, we contrast and compare the optimal subsidy strategy and influencing factors when operational efficiency indicators vary. Finally, we validate and analyze this model with numerical analysis and discuss the impact of development stage, technological level, and change in subsidy amount on the operational efficiency of the microgrid industry chain and on the returns of each participant. This result is of great significance to subsidy practice for microgrids and the development of microgrids.

Suggested Citation

  • Yong Long & Chengrong Pan & Yu Wang, 2018. "Research on a Microgrid Subsidy Strategy Based on Operational Efficiency of the Industry Chain," Sustainability, MDPI, vol. 10(5), pages 1-26, May.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:5:p:1519-:d:145677
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/5/1519/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/5/1519/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jarnut, Marcin & Wermiński, Szymon & Waśkowicz, Bartosz, 2017. "Comparative analysis of selected energy storage technologies for prosumer-owned microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 925-937.
    2. Ata A. Taleizadeh & Mohammad S. Moshtagh & Ilkyeong Moon, 2017. "Optimal decisions of price, quality, effort level and return policy in a three-level closed-loop supply chain based on different game theory approaches," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 11(4), pages 486-525.
    3. Di Somma, M. & Graditi, G. & Heydarian-Forushani, E. & Shafie-khah, M. & Siano, P., 2018. "Stochastic optimal scheduling of distributed energy resources with renewables considering economic and environmental aspects," Renewable Energy, Elsevier, vol. 116(PA), pages 272-287.
    4. Yong Long & Yu Wang & Chengrong Pan, 2017. "Auction Mechanism of Micro-Grid Project Transfer," Sustainability, MDPI, vol. 9(10), pages 1-20, October.
    5. Zeng, Zheng & Zhao, Rongxiang & Yang, Huan & Tang, Shengqing, 2014. "Policies and demonstrations of micro-grids in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 701-718.
    6. Han, Xiaojuan & Zhang, Hua & Yu, Xiaoling & Wang, Lina, 2016. "Economic evaluation of grid-connected micro-grid system with photovoltaic and energy storage under different investment and financing models," Applied Energy, Elsevier, vol. 184(C), pages 103-118.
    7. Christos-Spyridon Karavas & Konstantinos Arvanitis & George Papadakis, 2017. "A Game Theory Approach to Multi-Agent Decentralized Energy Management of Autonomous Polygeneration Microgrids," Energies, MDPI, vol. 10(11), pages 1-22, November.
    8. Amjad Ali & Wuhua Li & Rashid Hussain & Xiangning He & Barry W. Williams & Abdul Hameed Memon, 2017. "Overview of Current Microgrid Policies, Incentives and Barriers in the European Union, United States and China," Sustainability, MDPI, vol. 9(7), pages 1-28, June.
    9. Javidsharifi, Mahshid & Niknam, Taher & Aghaei, Jamshid & Mokryani, Geev, 2018. "Multi-objective short-term scheduling of a renewable-based microgrid in the presence of tidal resources and storage devices," Applied Energy, Elsevier, vol. 216(C), pages 367-381.
    10. Ramchandran, Neeraj & Pai, Rajesh & Parihar, Amit Kumar Singh, 2016. "Feasibility assessment of Anchor-Business-Community model for off-grid rural electrification in India," Renewable Energy, Elsevier, vol. 97(C), pages 197-209.
    11. Kamel, Rashad M., 2016. "New inverter control for balancing standalone micro-grid phase voltages: A review on MG power quality improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 520-532.
    12. Rieger, Alexander & Thummert, Robert & Fridgen, Gilbert & Kahlen, Micha & Ketter, Wolfgang, 2016. "Estimating the benefits of cooperation in a residential microgrid: A data-driven approach," Applied Energy, Elsevier, vol. 180(C), pages 130-141.
    13. Pereira, Edinaldo José da Silva & Pinho, João Tavares & Galhardo, Marcos André Barros & Macêdo, Wilson Negrão, 2014. "Methodology of risk analysis by Monte Carlo Method applied to power generation with renewable energy," Renewable Energy, Elsevier, vol. 69(C), pages 347-355.
    14. Anna Nagurney & Patrizia Daniele & Shivani Shukla, 2017. "A supply chain network game theory model of cybersecurity investments with nonlinear budget constraints," Annals of Operations Research, Springer, vol. 248(1), pages 405-427, January.
    15. Damilola A. Asaleye & Michael Breen & Michael D. Murphy, 2017. "A Decision Support Tool for Building Integrated Renewable Energy Microgrids Connected to a Smart Grid," Energies, MDPI, vol. 10(11), pages 1-29, November.
    16. Ustun, Taha Selim & Ozansoy, Cagil & Zayegh, Aladin, 2011. "Recent developments in microgrids and example cases around the world—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4030-4041.
    17. Moradi, Mohammad H. & Foroutan, Vahid Bahrami & Abedini, Mohammad, 2017. "Power flow analysis in islanded Micro-Grids via modeling different operational modes of DGs: A review and a new approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 248-262.
    18. Nie, Pu-Yan & Wang, Chan & Yang, Yon-Cong, 2017. "Comparison of energy efficiency subsidies under market power," Energy Policy, Elsevier, vol. 110(C), pages 144-149.
    19. Zhu, Xuan & Han, Xiao-qing & Qin, Wen-ping & Wang, Peng, 2015. "Past, today and future development of micro-grids in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1453-1463.
    20. Blasques, L.C.M. & Pinho, J.T., 2012. "Metering systems and demand-side management models applied to hybrid renewable energy systems in micro-grid configuration," Energy Policy, Elsevier, vol. 45(C), pages 721-729.
    21. Srinivasan, Sunderasan, 2009. "Subsidy policy and the enlargement of choice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2728-2733, December.
    22. Tamás, Mészáros Mátyás & Bade Shrestha, S.O. & Zhou, Huizhong, 2010. "Feed-in tariff and tradable green certificate in oligopoly," Energy Policy, Elsevier, vol. 38(8), pages 4040-4047, August.
    23. Yong Long & Yu Wang & Chengrong Pan, 2018. "Incentive Mechanism of Micro-grid Project Development," Sustainability, MDPI, vol. 10(1), pages 1-19, January.
    24. Taha, Ahmad F. & Hachem, Nadim A. & Panchal, Jitesh H., 2014. "A Quasi-Feed-In-Tariff policy formulation in micro-grids: A bi-level multi-period approach," Energy Policy, Elsevier, vol. 71(C), pages 63-75.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deng Xu & Yong Long, 2019. "The Impact of Government Subsidy on Renewable Microgrid Investment Considering Double Externalities," Sustainability, MDPI, vol. 11(11), pages 1-15, June.
    2. Pablo Benalcazar & Adam Suski & Jacek Kamiński, 2020. "The Effects of Capital and Energy Subsidies on the Optimal Design of Microgrid Systems," Energies, MDPI, vol. 13(4), pages 1-23, February.
    3. Min Song & Yu Wang & Yong Long, 2022. "Investment and Production Strategies of Renewable Energy Power under the Quota and Green Power Certificate System," Energies, MDPI, vol. 15(11), pages 1-24, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yong Long & Yu Wang & Chengrong Pan, 2018. "Incentive Mechanism of Micro-grid Project Development," Sustainability, MDPI, vol. 10(1), pages 1-19, January.
    2. Younes Zahraoui & Ibrahim Alhamrouni & Saad Mekhilef & M. Reyasudin Basir Khan & Mehdi Seyedmahmoudian & Alex Stojcevski & Ben Horan, 2021. "Energy Management System in Microgrids: A Comprehensive Review," Sustainability, MDPI, vol. 13(19), pages 1-33, September.
    3. Shi, Jiaqi & Ma, Liya & Li, Chenchen & Liu, Nian & Zhang, Jianhua, 2022. "A comprehensive review of standards for distributed energy resource grid-integration and microgrid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    4. Avilés A., Camilo & Oliva H., Sebastian & Watts, David, 2019. "Single-dwelling and community renewable microgrids: Optimal sizing and energy management for new business models," Applied Energy, Elsevier, vol. 254(C).
    5. Thomas Sachs & Anna Gründler & Milos Rusic & Gilbert Fridgen, 2019. "Framing Microgrid Design from a Business and Information Systems Engineering Perspective," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(6), pages 729-744, December.
    6. Chen, Weidong & Wei, Pengbang, 2018. "Socially optimal deployment strategy and incentive policy for solar photovoltaic community microgrid: A case of China," Energy Policy, Elsevier, vol. 116(C), pages 86-94.
    7. Jin, Xiaolong & Mu, Yunfei & Jia, Hongjie & Wu, Jianzhong & Xu, Xiandong & Yu, Xiaodan, 2016. "Optimal day-ahead scheduling of integrated urban energy systems," Applied Energy, Elsevier, vol. 180(C), pages 1-13.
    8. Yildizbasi, Abdullah, 2021. "Blockchain and renewable energy: Integration challenges in circular economy era," Renewable Energy, Elsevier, vol. 176(C), pages 183-197.
    9. Wang, Richard & Lam, Chor-Man & Hsu, Shu-Chien & Chen, Jieh-Haur, 2019. "Life cycle assessment and energy payback time of a standalone hybrid renewable energy commercial microgrid: A case study of Town Island in Hong Kong," Applied Energy, Elsevier, vol. 250(C), pages 760-775.
    10. Amjad Ali & Wuhua Li & Rashid Hussain & Xiangning He & Barry W. Williams & Abdul Hameed Memon, 2017. "Overview of Current Microgrid Policies, Incentives and Barriers in the European Union, United States and China," Sustainability, MDPI, vol. 9(7), pages 1-28, June.
    11. Haoran Zhao & Sen Guo & Huiru Zhao, 2018. "Selecting the Optimal Micro-Grid Planning Program Using a Novel Multi-Criteria Decision Making Model Based on Grey Cumulative Prospect Theory," Energies, MDPI, vol. 11(7), pages 1-24, July.
    12. Peiyue Cheng & Guitao Zhang & Hao Sun, 2022. "The Sustainable Supply Chain Network Competition Based on Non-Cooperative Equilibrium under Carbon Emission Permits," Mathematics, MDPI, vol. 10(9), pages 1-31, April.
    13. Li, Jidong & Chen, Shijun & Wu, Yuqiang & Wang, Qinhui & Liu, Xing & Qi, Lijian & Lu, Xiuyuan & Gao, Lu, 2021. "How to make better use of intermittent and variable energy? A review of wind and photovoltaic power consumption in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    14. Vinny Motjoadi & Pitshou N. Bokoro & Moses O. Onibonoje, 2020. "A Review of Microgrid-Based Approach to Rural Electrification in South Africa: Architecture and Policy Framework," Energies, MDPI, vol. 13(9), pages 1-22, May.
    15. Di Silvestre, Maria Luisa & Favuzza, Salvatore & Riva Sanseverino, Eleonora & Zizzo, Gaetano, 2018. "How Decarbonization, Digitalization and Decentralization are changing key power infrastructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 483-498.
    16. Unamuno, Eneko & Barrena, Jon Andoni, 2015. "Hybrid ac/dc microgrids—Part I: Review and classification of topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1251-1259.
    17. Fenling Feng & Tianzuo Zhang & Chengguang Liu & Lifeng Fan, 2020. "China Railway Express Subsidy Model Based on Game Theory under “the Belt and Road” Initiative," Sustainability, MDPI, vol. 12(5), pages 1-16, March.
    18. Norouzi, Farshid & Hoppe, Thomas & Elizondo, Laura Ramirez & Bauer, Pavol, 2022. "A review of socio-technical barriers to Smart Microgrid development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    19. Eko Supriyanto & Jayan Sentanuhady & Wisnu Hozaifa Hasan & Ariyana Dwiputra Nugraha & Muhammad Akhsin Muflikhun, 2022. "Policy and Strategies of Tariff Incentives Related to Renewable Energy: Comparison between Indonesia and Other Developing and Developed Countries," Sustainability, MDPI, vol. 14(20), pages 1-17, October.
    20. Yanine, Franco F. & Sauma, Enzo E., 2013. "Review of grid-tie micro-generation systems without energy storage: Towards a new approach to sustainable hybrid energy systems linked to energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 60-95.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:5:p:1519-:d:145677. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.