IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i4p1029-d138910.html
   My bibliography  Save this article

A Gateway to Successful River Restorations: A Pre-Assessment Framework on the River Ecosystem in Northeast China

Author

Listed:
  • Xin Jiang

    (Institute of Water and Environmental Research, Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China)

  • Yuyu Liu

    (School of Resources and Environment, University of Jinan, Jinan 250002, China)

  • Shiguo Xu

    (Institute of Water and Environmental Research, Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China)

  • Wei Qi

    (School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China)

Abstract

Natural rivers have been disturbed for hundreds of years by human activities. Previous water conservancy projects in the form of dams, reservoirs, dykes, and irrigation infrastructure focused on the social and economic benefits and disregarded the adverse effects on the physical, chemical, and biological characteristics of the affected rivers. Since the 2000s, the comprehension of river remolding has transformed so decisions are more socially and ecologically beneficial. However, restoration actions are often implemented aimlessly, without a detailed plan or sufficient communication, leading to the failure of accomplishing objectives for a variety of ecologic, financial, and social reasons. Thus, a pre-assessment framework is proposed in this paper, to determine river restoration priorities, emphasizing both social and ecological aspects. The vague notion of river health is evaluated using the Variable Fuzzy Assessment Model (VFAM) and expressed by modified Nightingale Rose Diagrams (NRDs). The river social ecosystem was subsequently analysed using this framework in the Ashihe River near Harbin City, Northeast China. The application of VFAM demonstrated that the health status of the upper, middle, and lower sections of the river could be classified as sub-healthy, degraded, or sick in terms of ecosystem structures, and sub-healthy, degraded, or degraded in terms of social functions, respectively. The health status of the lower section was the poorest and should be restored first. Using NRDs, we found that water quality deterioration and irrigation works are the two key factors in river degradation, which must be improved throughout the entire watershed. Aesthetics and recreation should also be given priority to restore the lower section due to the demands of nearby residents. Several measures are also suggested for decision makers who need a more detailed design to implement. This framework potentially assists with communicating with stakeholders, avoids aimless restoration actions, and contributes to comparing with the measuring after restorations.

Suggested Citation

  • Xin Jiang & Yuyu Liu & Shiguo Xu & Wei Qi, 2018. "A Gateway to Successful River Restorations: A Pre-Assessment Framework on the River Ecosystem in Northeast China," Sustainability, MDPI, vol. 10(4), pages 1-20, March.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:4:p:1029-:d:138910
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/4/1029/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/4/1029/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ewelina Szałkiewicz & Szymon Jusik & Mateusz Grygoruk, 2018. "Status of and Perspectives on River Restoration in Europe: 310,000 Euros per Hectare of Restored River," Sustainability, MDPI, vol. 10(1), pages 1-15, January.
    2. Ho, William, 2008. "Integrated analytic hierarchy process and its applications - A literature review," European Journal of Operational Research, Elsevier, vol. 186(1), pages 211-228, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chenyang Xue & Chaofeng Shao & Sihan Chen, 2020. "SDGs-Based River Health Assessment for Small- and Medium-Sized Watersheds," Sustainability, MDPI, vol. 12(5), pages 1-20, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yan-Lai & Tang, Jia-Fu & Chin, Kwai-Sang & Jiang, Yu-Shi & Han, Yi & Pu, Yun, 2011. "Estimating the final priority ratings of engineering characteristics in mature-period product improvement by MDBA and AHP," International Journal of Production Economics, Elsevier, vol. 131(2), pages 575-586, June.
    2. Thomas L. Saaty, 2013. "The Modern Science of Multicriteria Decision Making and Its Practical Applications: The AHP/ANP Approach," Operations Research, INFORMS, vol. 61(5), pages 1101-1118, October.
    3. Juan Cabello Eras & Dayli Covas Varela & Gilberto Hernández Pérez & Alexis Sagastume Gutiérrez & Dunia García Lorenzo & Carlo Vandecasteele & Luc Hens, 2014. "Comparative study of the urban quality of life in Cuban first-level cities from an objective dimension," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 16(1), pages 195-215, February.
    4. Madjid Tavana & Mariya Sodenkamp & Leena Suhl, 2010. "A soft multi-criteria decision analysis model with application to the European Union enlargement," Annals of Operations Research, Springer, vol. 181(1), pages 393-421, December.
    5. Villacreses, Geovanna & Gaona, Gabriel & Martínez-Gómez, Javier & Jijón, Diego Juan, 2017. "Wind farms suitability location using geographical information system (GIS), based on multi-criteria decision making (MCDM) methods: The case of continental Ecuador," Renewable Energy, Elsevier, vol. 109(C), pages 275-286.
    6. Kadir Diler Alemdar & Ahmet Tortum & Ömer Kaya & Ahmet Atalay, 2021. "Interdisciplinary Evaluation of Intersection Performances—A Microsimulation-Based MCDA," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
    7. M Tavana & M A Sodenkamp, 2010. "A fuzzy multi-criteria decision analysis model for advanced technology assessment at Kennedy Space Center," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(10), pages 1459-1470, October.
    8. Pedro Jose Gudiel Pineda & Chao-Che Hsu & James J. H. Liou & Huai-Wei Lo, 2018. "A Hybrid Model for Aircraft Type Determination Following Flight Cancellation," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(04), pages 1147-1172, July.
    9. Sepehr Ghazinoory & Mansoureh Abdi & Mandana Azadegan-Mehr, 2010. "Swot Methodology: A State-of-the-Art Review for the Past, A Framework for the Future," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 12(1), pages 24-48, November.
    10. J Aznar & J Ferrís-Oñate & F Guijarro, 2010. "An ANP framework for property pricing combining quantitative and qualitative attributes," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(5), pages 740-755, May.
    11. Garyfallos Arabatzis & Georgios Kolkos & Anastasia Stergiadou & Apostolos Kantartzis & Stergios Tampekis, 2024. "Optimal Allocation of Water Reservoirs for Sustainable Wildfire Prevention Planning via AHP-TOPSIS and Forest Road Network Analysis," Sustainability, MDPI, vol. 16(2), pages 1-27, January.
    12. Rahul S. Mor & Arvind Bhardwaj & Sarbjit Singh, 2019. "Integration of SWOT-AHP Approach for Measuring the Critical Factors of Dairy Supply Chain," Logistics, MDPI, vol. 3(1), pages 1-14, February.
    13. Nishat Alam Choudhary & Shalabh Singh & Tobias Schoenherr & M. Ramkumar, 2023. "Risk assessment in supply chains: a state-of-the-art review of methodologies and their applications," Annals of Operations Research, Springer, vol. 322(2), pages 565-607, March.
    14. Lai, Po‐Lin & Potter, Andrew & Beynon, Malcolm & Beresford, Anthony, 2015. "Evaluating the efficiency performance of airports using an integrated AHP/DEA-AR technique," Transport Policy, Elsevier, vol. 42(C), pages 75-85.
    15. repec:jle:journl:132 is not listed on IDEAS
    16. Pablo Cabrera-Barona & Omid Ghorbanzadeh, 2018. "Comparing Classic and Interval Analytical Hierarchy Process Methodologies for Measuring Area-Level Deprivation to Analyze Health Inequalities," IJERPH, MDPI, vol. 15(1), pages 1-12, January.
    17. Alexandra Lenis Escobar & Ramón Rueda López & Jorge E. García Guerrero & Enrique Salinas Cuadrado, 2020. "Design of Strategies for the Implementation and Management of a Complementary Monetary System Using the SWOT-AHP Methodology," Sustainability, MDPI, vol. 12(17), pages 1-23, August.
    18. Marcos Antonio Alves & Ivan Reinaldo Meneghini & António Gaspar-Cunha & Frederico Gadelha Guimarães, 2023. "Machine Learning-Driven Approach for Large Scale Decision Making with the Analytic Hierarchy Process," Mathematics, MDPI, vol. 11(3), pages 1-18, January.
    19. Włodzimierz Kanownik & Agnieszka Policht-Latawiec & Wioletta Fudała, 2019. "Nutrient Pollutants in Surface Water—Assessing Trends in Drinking Water Resource Quality for a Regional City in Central Europe," Sustainability, MDPI, vol. 11(7), pages 1-15, April.
    20. Ediz Atmaca & Esra Aktaş & Hafsa Nur Öztürk, 2023. "Evaluated Post-Disaster and Emergency Assembly Areas Using Multi-Criteria Decision-Making Techniques: A Case Study of Turkey," Sustainability, MDPI, vol. 15(10), pages 1-26, May.
    21. Seyed Saeed Hosseinian & Hamidreza Navidi & Abas Hajfathaliha, 2012. "A New Linear Programming Method for Weights Generation and Group Decision Making in the Analytic Hierarchy Process," Group Decision and Negotiation, Springer, vol. 21(3), pages 233-254, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:4:p:1029-:d:138910. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.