IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i2p476-d131330.html
   My bibliography  Save this article

Comparison among Detailed and Simplified Calculation Methods for Thermal and Energy Assessment of the Building Envelope and the Shadings of a New Wooden nZEB House

Author

Listed:
  • Cristina Carletti

    (DIEF Department, University of Florence, via di Santa Marta 3, 50139 Florence, Italy)

  • Leone Pierangioli

    (DIEF Department, University of Florence, via di Santa Marta 3, 50139 Florence, Italy)

  • Fabio Sciurpi

    (DIEF Department, University of Florence, via di Santa Marta 3, 50139 Florence, Italy)

  • Andrea Salvietti

    (Salvietti Studio, Corso Italia 41, 52043 Castiglion Fiorentino, Italy)

Abstract

This paper deals with research carried out by the University of Florence on the thermal and energy performances of a recently built nZEB in Mediterranean Italian area. Heterogeneous component and thermal bridges performances have been analysed and critically evaluated with different calculation methods, and the results in terms of energy consumptions for heating and cooling have been compared. Some solar shading devices have been evaluated to reduce the building energy need for cooling. Main results of the research are presented for the components and thermal bridges properties and for the energy balance of the building implemented with different solar shadings.

Suggested Citation

  • Cristina Carletti & Leone Pierangioli & Fabio Sciurpi & Andrea Salvietti, 2018. "Comparison among Detailed and Simplified Calculation Methods for Thermal and Energy Assessment of the Building Envelope and the Shadings of a New Wooden nZEB House," Sustainability, MDPI, vol. 10(2), pages 1-21, February.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:2:p:476-:d:131330
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/2/476/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/2/476/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ascione, Fabrizio & De Masi, Rosa Francesca & de Rossi, Filippo & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2016. "Optimization of building envelope design for nZEBs in Mediterranean climate: Performance analysis of residential case study," Applied Energy, Elsevier, vol. 183(C), pages 938-957.
    2. Cristina Carletti & Fabio Sciurpi & Leone Pierangioli, 2014. "The Energy Upgrading of Existing Buildings: Window and Shading Device Typologies for Energy Efficiency Refurbishment," Sustainability, MDPI, vol. 6(8), pages 1-24, August.
    3. AlAjmi, Ali & Abou-Ziyan, Hosny & Ghoneim, Adel, 2016. "Achieving annual and monthly net-zero energy of existing building in hot climate," Applied Energy, Elsevier, vol. 165(C), pages 511-521.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cristina Carletti & Cristina Piselli & Fabio Sciurpi, 2024. "Are Design Strategies for High-Performance Buildings Really Effective? Results from One Year of Monitoring of Indoor Microclimate and Envelope Performance of a Newly Built nZEB House in Central Italy," Energies, MDPI, vol. 17(3), pages 1-23, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salata, Ferdinando & Ciancio, Virgilio & Dell'Olmo, Jacopo & Golasi, Iacopo & Palusci, Olga & Coppi, Massimo, 2020. "Effects of local conditions on the multi-variable and multi-objective energy optimization of residential buildings using genetic algorithms," Applied Energy, Elsevier, vol. 260(C).
    2. Lydon, G.P. & Hofer, J. & Svetozarevic, B. & Nagy, Z. & Schlueter, A., 2017. "Coupling energy systems with lightweight structures for a net plus energy building," Applied Energy, Elsevier, vol. 189(C), pages 310-326.
    3. de Rubeis, Tullio & Nardi, Iole & Ambrosini, Dario & Paoletti, Domenica, 2018. "Is a self-sufficient building energy efficient? Lesson learned from a case study in Mediterranean climate," Applied Energy, Elsevier, vol. 218(C), pages 131-145.
    4. Al-Saadi, Saleh Nasser & Shaaban, Awni K., 2019. "Zero energy building (ZEB) in a cooling dominated climate of Oman: Design and energy performance analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 299-316.
    5. Xiang Liu & Wanjiang Wang & Zixuan Wang & Junkang Song & Ke Li, 2023. "Simulation Study on Outdoor Wind Environment of Residential Complexes in Hot-Summer and Cold-Winter Climate Zones Based on Entropy-Based TOPSIS Method," Sustainability, MDPI, vol. 15(16), pages 1-28, August.
    6. Ascione, Fabrizio & De Masi, Rosa Francesca & de Rossi, Filippo & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2016. "Optimization of building envelope design for nZEBs in Mediterranean climate: Performance analysis of residential case study," Applied Energy, Elsevier, vol. 183(C), pages 938-957.
    7. Ana Mafalda Matos & João M. P. Q. Delgado & Ana Sofia Guimarães, 2022. "Energy-Efficiency Passive Strategies for Mediterranean Climate: An Overview," Energies, MDPI, vol. 15(7), pages 1-20, April.
    8. Facundo Bre & Antonio Caggiano & Eduardus A. B. Koenders, 2022. "Multiobjective Optimization of Cement-Based Panels Enhanced with Microencapsulated Phase Change Materials for Building Energy Applications," Energies, MDPI, vol. 15(14), pages 1-17, July.
    9. D'Agostino, D. & Minelli, F. & D'Urso, M. & Minichiello, F., 2022. "Fixed and tracking PV systems for Net Zero Energy Buildings: Comparison between yearly and monthly energy balance," Renewable Energy, Elsevier, vol. 195(C), pages 809-824.
    10. Anna Laura Pisello, 2015. "Experimental Analysis of Cool Traditional Solar Shading Systems for Residential Buildings," Energies, MDPI, vol. 8(3), pages 1-14, March.
    11. Carmen María Calama-González & Rafael Suárez & Ángel Luis León-Rodríguez, 2018. "Thermal and Lighting Consumption Savings in Classrooms Retrofitted with Shading Devices in a Hot Climate," Energies, MDPI, vol. 11(10), pages 1-17, October.
    12. Harkouss, Fatima & Fardoun, Farouk & Biwole, Pascal Henry, 2018. "Passive design optimization of low energy buildings in different climates," Energy, Elsevier, vol. 165(PA), pages 591-613.
    13. Han Yang & Koki Kikuta & Motoya Hayashi, 2022. "Research on Carbon Reduction of Residential Buildings in Severe Cold Regions Based on Renovation of Envelopes," Energies, MDPI, vol. 15(5), pages 1-19, March.
    14. Prada, A. & Gasparella, A. & Baggio, P., 2018. "On the performance of meta-models in building design optimization," Applied Energy, Elsevier, vol. 225(C), pages 814-826.
    15. Bilardo, Matteo & Fraisse, Gilles & Pailha, Mickael & Fabrizio, Enrico, 2020. "Design and experimental analysis of an Integral Collector Storage (ICS) prototype for DHW production," Applied Energy, Elsevier, vol. 259(C).
    16. Dong-Seok Lee & Jae-Hun Jo & Sung-Han Koo & Byung-Yun Lee, 2015. "Development of Climate Indices Using Local Weather Data for Shading Design," Sustainability, MDPI, vol. 7(2), pages 1-16, February.
    17. Kočí, Jan & Kočí, Václav & Maděra, Jiří & Černý, Robert, 2019. "Effect of applied weather data sets in simulation of building energy demands: Comparison of design years with recent weather data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 22-32.
    18. Wijesuriya, Sajith & Brandt, Matthew & Tabares-Velasco, Paulo Cesar, 2018. "Parametric analysis of a residential building with phase change material (PCM)-enhanced drywall, precooling, and variable electric rates in a hot and dry climate," Applied Energy, Elsevier, vol. 222(C), pages 497-514.
    19. Marchini, F. & Chiatti, C. & Fabiani, C. & Pisello, A.L., 2023. "Development of an innovative translucent–photoluminescent coating for smart windows applications: An experimental and numerical investigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    20. Aiman Mohammed & Muhammad Atiq Ur Rehman Tariq & Anne Wai Man Ng & Zeeshan Zaheer & Safwan Sadeq & Mahmood Mohammed & Hooman Mehdizadeh-Rad, 2022. "Reducing the Cooling Loads of Buildings Using Shading Devices: A Case Study in Darwin," Sustainability, MDPI, vol. 14(7), pages 1-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:2:p:476-:d:131330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.