IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i11p3867-d178012.html
   My bibliography  Save this article

The Uncapacitatied Dynamic Single-Level Lot-Sizing Problem under a Time-Varying Environment and an Exact Solution Approach

Author

Listed:
  • Yiyong Xiao

    (School of Reliability and System Engineering, Beihang University, Beijing 100191, China)

  • Meng You

    (School of Reliability and System Engineering, Beihang University, Beijing 100191, China)

  • Xiaorong Zuo

    (School of Reliability and System Engineering, Beihang University, Beijing 100191, China)

  • Shenghan Zhou

    (School of Reliability and System Engineering, Beihang University, Beijing 100191, China)

  • Xing Pan

    (School of Reliability and System Engineering, Beihang University, Beijing 100191, China)

Abstract

The dynamic lot-sizing problem under a time-varying environment considers new features of the production system where factors such as production setup cost, unit inventory-holding cost, and unit price of manufacturing resources may vary in different periods over the whole planning horizon. Traditional lot-sizing theorems and algorithms are no longer fit for these situations as they had assumed constant environments. In our study, we investigated the dynamic lot-sizing problem with deteriorating production setup cost, a typical time-varying environment where the production setup is assumed to consume more preparing time and manufacturing resources as the production interval lasts longer. We proposed new lot-sizing models based on the traditional lot-sizing model considering the changing setup cost as a new constraint, called uncapacitatied dynamic single-level lot-sizing under a time-varying environment (UDSLLS-TVE for short). The UDSLLS-TVE problem has a more realistic significance and higher research value as it is closer to reality and has higher computational complexity as well. We proposed two mathematical programming models to describe UDSLLS_TVE with or without nonlinear components, respectively. Properties of the UDSLLS-TVE models were extensively analyzed and an exact algorithm based on forward dynamic programming (FDP) was proposed to solve this problem with a complexity of O ( n 2 ). Comparative experiments with the commercial MIP solver CPLEX on synthesized problem instances showed that the FDP algorithm is a global optimization algorithm and has a high computational efficiency.

Suggested Citation

  • Yiyong Xiao & Meng You & Xiaorong Zuo & Shenghan Zhou & Xing Pan, 2018. "The Uncapacitatied Dynamic Single-Level Lot-Sizing Problem under a Time-Varying Environment and an Exact Solution Approach," Sustainability, MDPI, vol. 10(11), pages 1-14, October.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:11:p:3867-:d:178012
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/11/3867/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/11/3867/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Uladzimir Rubasheuski & Johan Oppen & David L. Woodruff, 2018. "A stochastic programming approach to solve a coordinated capacitated stochastic dynamic demand lot-sizing problem with emergency supplies," International Journal of Logistics Systems and Management, Inderscience Enterprises Ltd, vol. 29(2), pages 173-189.
    2. Michalis Nikiforos, 2013. "The (Normal) Rate of Capacity Utilization at the Firm Level," Metroeconomica, Wiley Blackwell, vol. 64(3), pages 513-538, July.
    3. Almeder, Christian & Klabjan, Diego & Traxler, Renate & Almada-Lobo, Bernardo, 2015. "Lead time considerations for the multi-level capacitated lot-sizing problem," European Journal of Operational Research, Elsevier, vol. 241(3), pages 727-738.
    4. Marcos Mansano Furlan & Maristela Oliveira Santos, 2017. "BFO: a hybrid bees algorithm for the multi-level capacitated lot-sizing problem," Journal of Intelligent Manufacturing, Springer, vol. 28(4), pages 929-944, April.
    5. Dye, Chung-Yuan & Hsieh, Tsu-Pang & Ouyang, Liang-Yuh, 2007. "Determining optimal selling price and lot size with a varying rate of deterioration and exponential partial backlogging," European Journal of Operational Research, Elsevier, vol. 181(2), pages 668-678, September.
    6. Alan S. Manne, 1958. "Programming of Economic Lot Sizes," Management Science, INFORMS, vol. 4(2), pages 115-135, January.
    7. Chung-Yee Lee & Sila Çetinkaya & Albert P. M. Wagelmans, 2001. "A Dynamic Lot-Sizing Model with Demand Time Windows," Management Science, INFORMS, vol. 47(10), pages 1384-1395, October.
    8. Xiao, Yiyong & Zhang, Renqian & Zhao, Qiuhong & Kaku, Ikou & Xu, Yuchun, 2014. "A variable neighborhood search with an effective local search for uncapacitated multilevel lot-sizing problems," European Journal of Operational Research, Elsevier, vol. 235(1), pages 102-114.
    9. Harvey M. Wagner & Thomson M. Whitin, 1958. "Dynamic Version of the Economic Lot Size Model," Management Science, INFORMS, vol. 5(1), pages 89-96, October.
    10. Haase, Knut & Kimms, Alf, 2000. "Lot sizing and scheduling with sequence-dependent setup costs and times and efficient rescheduling opportunities," International Journal of Production Economics, Elsevier, vol. 66(2), pages 159-169, June.
    11. Hui-Ling Yang, 2011. "A partial backlogging production-inventory lot-size model for deteriorating items with time-varying production and demand rate over a finite time horizon," International Journal of Systems Science, Taylor & Francis Journals, vol. 42(8), pages 1397-1407.
    12. Karimi, B. & Fatemi Ghomi, S. M. T. & Wilson, J. M., 2003. "The capacitated lot sizing problem: a review of models and algorithms," Omega, Elsevier, vol. 31(5), pages 365-378, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Melega, Gislaine Mara & de Araujo, Silvio Alexandre & Jans, Raf, 2018. "Classification and literature review of integrated lot-sizing and cutting stock problems," European Journal of Operational Research, Elsevier, vol. 271(1), pages 1-19.
    2. Nadjib Brahimi & Stéphane Dauzère-Pérès & Najib M. Najid, 2006. "Capacitated Multi-Item Lot-Sizing Problems with Time Windows," Operations Research, INFORMS, vol. 54(5), pages 951-967, October.
    3. Jans, R.F. & Degraeve, Z., 2005. "Modeling Industrial Lot Sizing Problems: A Review," ERIM Report Series Research in Management ERS-2005-049-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    4. Brahimi, Nadjib & Dauzere-Peres, Stephane & Najid, Najib M. & Nordli, Atle, 2006. "Single item lot sizing problems," European Journal of Operational Research, Elsevier, vol. 168(1), pages 1-16, January.
    5. Wolosewicz, Cathy & Dauzère-Pérès, Stéphane & Aggoune, Riad, 2015. "A Lagrangian heuristic for an integrated lot-sizing and fixed scheduling problem," European Journal of Operational Research, Elsevier, vol. 244(1), pages 3-12.
    6. Boonmee, Atiwat & Sethanan, Kanchana, 2016. "A GLNPSO for multi-level capacitated lot-sizing and scheduling problem in the poultry industry," European Journal of Operational Research, Elsevier, vol. 250(2), pages 652-665.
    7. Bruno, Giuseppe & Genovese, Andrea & Piccolo, Carmela, 2014. "The capacitated Lot Sizing model: A powerful tool for logistics decision making," International Journal of Production Economics, Elsevier, vol. 155(C), pages 380-390.
    8. Brahimi, Nadjib & Absi, Nabil & Dauzère-Pérès, Stéphane & Nordli, Atle, 2017. "Single-item dynamic lot-sizing problems: An updated survey," European Journal of Operational Research, Elsevier, vol. 263(3), pages 838-863.
    9. Abdolreza Roshani & Massimo Paolucci & Davide Giglio & Melissa Demartini & Flavio Tonelli & Maxim A. Dulebenets, 2023. "The capacitated lot-sizing and energy efficient single machine scheduling problem with sequence dependent setup times and costs in a closed-loop supply chain network," Annals of Operations Research, Springer, vol. 321(1), pages 469-505, February.
    10. Berk, Emre & Toy, Ayhan Ozgur & Hazir, Oncu, 2008. "Single item lot-sizing problem for a warm/cold process with immediate lost sales," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1251-1267, June.
    11. Süral, Haldun & Denizel, Meltem & Van Wassenhove, Luk N., 2009. "Lagrangean relaxation based heuristics for lot sizing with setup times," European Journal of Operational Research, Elsevier, vol. 194(1), pages 51-63, April.
    12. Yasemin Merzifonluoğlu & Joseph Geunes & H.E. Romeijn, 2007. "Integrated capacity, demand, and production planning with subcontracting and overtime options," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(4), pages 433-447, June.
    13. Lee, Jinkyu & Bae, Sanghyeon & Kim, Woo Chang & Lee, Yongjae, 2023. "Value function gradient learning for large-scale multistage stochastic programming problems," European Journal of Operational Research, Elsevier, vol. 308(1), pages 321-335.
    14. Rossi, Tommaso & Pozzi, Rossella & Testa, Mariapaola, 2017. "EOQ-based inventory management in single-machine multi-item systems," Omega, Elsevier, vol. 71(C), pages 106-113.
    15. Timo Hilger & Florian Sahling & Horst Tempelmeier, 2016. "Capacitated dynamic production and remanufacturing planning under demand and return uncertainty," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(4), pages 849-876, October.
    16. Bouchery, Yann & Hezarkhani, Behzad & Stauffer, Gautier, 2022. "Coalition formation and cost sharing for truck platooning," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 15-34.
    17. Toy, Ayhan Özgür & Berk, Emre, 2013. "Dynamic lot sizing for a warm/cold process: Heuristics and insights," International Journal of Production Economics, Elsevier, vol. 145(1), pages 53-66.
    18. Degraeve, Z. & Jans, R.F., 2003. "Improved Lower Bounds For The Capacitated Lot Sizing Problem With Set Up Times," ERIM Report Series Research in Management ERS-2003-026-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    19. Tiacci, Lorenzo & Saetta, Stefano, 2012. "Demand forecasting, lot sizing and scheduling on a rolling horizon basis," International Journal of Production Economics, Elsevier, vol. 140(2), pages 803-814.
    20. Yongpei Guan, 2011. "Stochastic lot-sizing with backlogging: computational complexity analysis," Journal of Global Optimization, Springer, vol. 49(4), pages 651-678, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:11:p:3867-:d:178012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.