IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i10p3399-d171760.html
   My bibliography  Save this article

Effect of Pre-Determined Maintenance Repair Rates on the Health Index State Distribution and Performance Condition Curve Based on the Markov Prediction Model for Sustainable Transformers Asset Management Strategies

Author

Listed:
  • Muhammad Sharil Yahaya

    (Centre for Electromagnetic and Lightning Protection, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
    Faculty of Engineering Technology, Universiti Teknikal Malaysia Melaka, 76100 Durian Tunggal, Melaka, Malaysia)

  • Norhafiz Azis

    (Centre for Electromagnetic and Lightning Protection, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
    Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia)

  • Amran Mohd Selva

    (Centre for Electromagnetic and Lightning Protection, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia)

  • Mohd Zainal Abidin Ab Kadir

    (Centre for Electromagnetic and Lightning Protection, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
    Institute of Power Engineering (IPE), Universiti Tenaga Nasional, 43000 Kajang, Selangor, Malaysia)

  • Jasronita Jasni

    (Centre for Electromagnetic and Lightning Protection, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia)

  • Mohd Hendra Hairi

    (Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka, 76100 Durian Tunggal, Melaka, Malaysia)

  • Young Zaidey Yang Ghazali

    (Distribution Division, Tenaga Nasional Berhad, Wisma TNB, Jalan Timur, 46200 Petaling Jaya, Selangor, Malaysia)

  • Mohd Aizam Talib

    (TNB Research Sdn. Bhd., No. 1, Lorong Ayer Itam, Kawasan Institut Penyelidikan, 43000 Kajang, Selangor, Malaysia)

Abstract

This paper presents an investigation of the condition state distribution and performance condition curve of the transformer population under different pre-determined maintenance repair rates based on the Markov Prediction Model (MPM). In total, 3195 oil samples from 373 transformers with an age between one and 25 years were tested. The previously computed Health Index (HI) prediction model of the transformer population based on MPM utilizing the nonlinear minimization technique was employed in this study. The transition probabilities for each of the states were updated based on 10%, 20% and 30% pre-determined maintenance repair rates for the sensitivity study. Next, the HI state distribution and performance condition curve were analyzed based on the Markov chain algorithm. Based on the case study, it is found that the pre-determined maintenance repair rates can affect the HI state distribution and improve the performance condition curve. The 30% pre-determined maintenance repair rate gives the highest impact, especially for the transformer population at state 4 (poor). Overall, the average percentage of change for all HI state distributions is 16.48%. A clear improvement of HI state distribution is found at state 4 (poor) where the highest percentage can be up to 63.25%.

Suggested Citation

  • Muhammad Sharil Yahaya & Norhafiz Azis & Amran Mohd Selva & Mohd Zainal Abidin Ab Kadir & Jasronita Jasni & Mohd Hendra Hairi & Young Zaidey Yang Ghazali & Mohd Aizam Talib, 2018. "Effect of Pre-Determined Maintenance Repair Rates on the Health Index State Distribution and Performance Condition Curve Based on the Markov Prediction Model for Sustainable Transformers Asset Managem," Sustainability, MDPI, vol. 10(10), pages 1-13, September.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:10:p:3399-:d:171760
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/10/3399/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/10/3399/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muhammad Sharil Yahaya & Norhafiz Azis & Mohd Zainal Abidin Ab Kadir & Jasronita Jasni & Mohd Hendra Hairi & Mohd Aizam Talib, 2017. "Estimation of Transformers Health Index Based on the Markov Chain," Energies, MDPI, vol. 10(11), pages 1-11, November.
    2. Azmi, A. & Jasni, J. & Azis, N. & Kadir, M.Z.A. Ab., 2017. "Evolution of transformer health index in the form of mathematical equation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 687-700.
    3. Si, Xiao-Sheng & Wang, Wenbin & Hu, Chang-Hua & Zhou, Dong-Hua, 2011. "Remaining useful life estimation - A review on the statistical data driven approaches," European Journal of Operational Research, Elsevier, vol. 213(1), pages 1-14, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elizaveta Gavrikova & Irina Volkova & Yegor Burda, 2020. "Strategic Aspects of Asset Management: An Overview of Current Research," Sustainability, MDPI, vol. 12(15), pages 1-31, July.
    2. Ramsey Jadim & Mirka Kans & Mohammed Alhattab & May Alhendi, 2021. "A Novel Condition Monitoring Procedure for Early Detection of Copper Corrosion Problems in Oil-Filled Electrical Transformers," Energies, MDPI, vol. 14(14), pages 1-12, July.
    3. Ramsey Jadim & Mirka Kans & Jesko Schulte & Mohammed Alhattab & May Alhendi & Ali Bushehry, 2021. "On Approaching Relevant Cost-Effective Sustainable Maintenance of Mineral Oil-Filled Electrical Transformers," Energies, MDPI, vol. 14(12), pages 1-17, June.
    4. Pedro J. Zarco-Periñán & José L. Martínez-Ramos & Fco. Javier Zarco-Soto, 2021. "On the Remuneration to Electrical Utilities and Budgetary Allocation for Substation Maintenance Management," Sustainability, MDPI, vol. 13(18), pages 1-15, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Sharil Yahaya & Norhafiz Azis & Amran Mohd Selva & Mohd Zainal Abidin Ab Kadir & Jasronita Jasni & Emran Jawad Kadim & Mohd Hendra Hairi & Young Zaidey Yang Ghazali, 2018. "A Maintenance Cost Study of Transformers Based on Markov Model Utilizing Frequency of Transition Approach," Energies, MDPI, vol. 11(8), pages 1-14, August.
    2. Patrick Zschech & Kai Heinrich & Raphael Bink & Janis S. Neufeld, 2019. "Prognostic Model Development with Missing Labels," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(3), pages 327-343, June.
    3. Hu, Yang & Baraldi, Piero & Di Maio, Francesco & Zio, Enrico, 2015. "A particle filtering and kernel smoothing-based approach for new design component prognostics," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 19-31.
    4. Zhang, Ao & Wang, Zhihua & Bao, Rui & Liu, Chengrui & Wu, Qiong & Cao, Shihao, 2023. "A novel failure time estimation method for degradation analysis based on general nonlinear Wiener processes," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    5. Zhang, Jian-Xun & Hu, Chang-Hua & He, Xiao & Si, Xiao-Sheng & Liu, Yang & Zhou, Dong-Hua, 2017. "Lifetime prognostics for deteriorating systems with time-varying random jumps," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 338-350.
    6. Miguel A. Rodríguez-López & Luis M. López-González & Luis M. López-Ochoa & Jesús Las-Heras-Casas, 2018. "Methodology for Detecting Malfunctions and Evaluating the Maintenance Effectiveness in Wind Turbine Generator Bearings Using Generic versus Specific Models from SCADA Data," Energies, MDPI, vol. 11(4), pages 1-22, March.
    7. KarabaÄŸ, Oktay & Eruguz, Ayse Sena & Basten, Rob, 2020. "Integrated optimization of maintenance interventions and spare part selection for a partially observable multi-component system," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    8. Zhengxin Zhang & Xiaosheng Si & Changhua Hu & Xiangyu Kong, 2015. "Degradation modeling–based remaining useful life estimation: A review on approaches for systems with heterogeneity," Journal of Risk and Reliability, , vol. 229(4), pages 343-355, August.
    9. Jahani, Salman & Zhou, Shiyu & Veeramani, Dharmaraj, 2021. "Stochastic prognostics under multiple time-varying environmental factors," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    10. Chang, Miaoxin & Huang, Xianzhen & Coolen, Frank PA & Coolen-Maturi, Tahani, 2023. "New reliability model for complex systems based on stochastic processes and survival signature," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1349-1364.
    11. Gupta, Nitin & Misra, Neeraj & Kumar, Somesh, 2015. "Stochastic comparisons of residual lifetimes and inactivity times of coherent systems with dependent identically distributed components," European Journal of Operational Research, Elsevier, vol. 240(2), pages 425-430.
    12. Zhang, Jian-Xun & Si, Xiao-Sheng & Du, Dang-Bo & Hu, Chang-Hua & Hu, Chen, 2020. "A novel iterative approach of lifetime estimation for standby systems with deteriorating spare parts," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    13. Nguyen Thanh Viet & Alla G. Kravets, 2022. "The New Method for Analyzing Technology Trends of Smart Energy Asset Performance Management," Energies, MDPI, vol. 15(18), pages 1-26, September.
    14. García Nieto, P.J. & García-Gonzalo, E. & Sánchez Lasheras, F. & de Cos Juez, F.J., 2015. "Hybrid PSO–SVM-based method for forecasting of the remaining useful life for aircraft engines and evaluation of its reliability," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 219-231.
    15. Qin, Shuidan & Wang, Bing Xing & Tsai, Tzong-Ru & Wang, Xiaofei, 2023. "The prediction of remaining useful lifetime for the Weibull k-out-of-n load-sharing system," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    16. Ondemir, Onder & Gupta, Surendra M., 2014. "A multi-criteria decision making model for advanced repair-to-order and disassembly-to-order system," European Journal of Operational Research, Elsevier, vol. 233(2), pages 408-419.
    17. Jin, Guang & Matthews, David E. & Zhou, Zhongbao, 2013. "A Bayesian framework for on-line degradation assessment and residual life prediction of secondary batteries inspacecraft," Reliability Engineering and System Safety, Elsevier, vol. 113(C), pages 7-20.
    18. Costa, Nahuel & Sánchez, Luciano, 2022. "Variational encoding approach for interpretable assessment of remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    19. Jianxun Zhang & Xiao He & Xiaosheng Si & Changhua Hu & Donghua Zhou, 2017. "A Novel Multi-Phase Stochastic Model for Lithium-Ion Batteries’ Degradation with Regeneration Phenomena," Energies, MDPI, vol. 10(11), pages 1-24, October.
    20. Le Son, Khanh & Fouladirad, Mitra & Barros, Anne & Levrat, Eric & Iung, Benoît, 2013. "Remaining useful life estimation based on stochastic deterioration models: A comparative study," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 165-175.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:10:p:3399-:d:171760. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.